精英家教网 > 高中数学 > 题目详情

(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线轴上的截距m的取值范围;
(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.

(1)(2)(3)利用直线MAMB的倾斜角互补,
证明直线MAMBx轴始终围成一个等腰三角形

解析试题分析:解:(Ⅰ)设椭圆方程为
 解得 
∴椭圆的方程为.             ………………………… 4分
(Ⅱ)(ⅰ)由直线平行于OM,得直线的斜率
轴上的截距为m,所以的方程为
 得.
又直线与椭圆交于A、B两个不同点,
,于是. ……………… 6分
为钝角等价于,             



由韦达定理代入上式,
化简整理得,即,故所求范围是.
……………………………………………8分
(ⅱ)依题意可知,直线MAMB的斜率存在,分别记为.
.      ………………………………10分



所以 , 故直线MAMB的倾斜角互补,
故直线MAMBx轴始终围成一个等腰三角形.…………………… 13分
考点:本试题考查了椭圆的方程和直线与椭圆的位置关系。
点评:对于解决解析几何的方程问题,一般都是利用其性质得到a,b,c的关系式,然后求解得到,而对于直线与椭圆的位置关系,通常利用设而不求的数学思想,结合韦达定理,以及判别式来分析求解。尤其关注图形的特点与斜率和向量之间的关系转换,属于难度题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
椭圆的左、右焦点分别为,点满足
(1)求椭圆的离心率
(2)设直线与椭圆相交于两点,若直线与圆相交于两点,且,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分) 如图,已知椭圆的两个焦点分别为,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B与y轴交点为C,又B为线段CF1的中点,若,求椭圆离心率e的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率
(1)求椭圆的标准方程;
(2)是否存在过点的直线交椭圆于不同的两点MN,且满足(其中点O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆方程为,左、右焦点分别是,若椭圆上的点的距离和等于
(Ⅰ)写出椭圆的方程和焦点坐标;
(Ⅱ)设点是椭圆的动点,求线段中点的轨迹方程;
(Ⅲ)直线过定点,且与椭圆交于不同的两点,若为锐角(为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个顶点到两个焦点的距离分别是7和1
(1)求椭圆的方程
(2)若为椭圆的动点,为过且垂直于轴的直线上的点,(e为椭圆C的离心率),求点的轨迹方程,并说明轨迹是什么曲线?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.

(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)过点作直线与抛物线相交于两点,圆

(1)若抛物线在点处的切线恰好与圆相切,求直线的方程;
(2)过点分别作圆的切线试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.

查看答案和解析>>

同步练习册答案