精英家教网 > 高中数学 > 题目详情
7.已知等比数列{an}的公比q>1,前n项和为Sn,并且满足a2+a3+a4=28,a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求使Sn>254-n•2n+1成立的正整数n的最小值.

分析 (1)依题意有2(a3+2)=a2+a4,又a2+a3+a4=28,故a3=8.a2+a4=20.由此能够推导出an=2n
(2)bn=anlog${\;}_{\frac{1}{2}}$an=2n•$lo{g}_{\frac{1}{2}}$2n=-n•2n,由错位相减法可得Sn,再由Sn>254-n•2n+1,解不等式即可得到n的最小值.

解答 解:(1)依题意有2(a3+2)=a2+a4
又a2+a3+a4=28,解得3=8.
所以a2+a4=20.
于是有$\left\{\begin{array}{l}{{a}_{1}q+{a}_{1}{q}^{3}=20}\\{{a}_{1}{q}^{2}=8}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{q=2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=32}\\{q=\frac{1}{2}}\end{array}\right.$,
又{an}是递增的,故a1=2,q=2.
所以an=2n
(2)bn=anlog${\;}_{\frac{1}{2}}$an=2n•$lo{g}_{\frac{1}{2}}$2n=-n•2n
-Sn=1•2+2•22+3•23+…+n•2n
-2Sn=1•22+2•23+3•24+…+n•2n+1
相减可得Sn=2+22+23+…+2n-n•2n+1
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1=2n+1-2-n•2n+1
由Sn>254-n•2n+1,可得2n+1>256=28
即为n+1>8,即n>7,
则n的最小值为8.

点评 本题考查等差数列和等比数列的通项和求和公式的运用,解题时要认真审题,注意挖掘题设中的隐含条件,灵活地运用公式解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的前n项和为Sn,向量$\overrightarrow{OP}$=(n,$\frac{{S}_{n}}{n}$),$\overrightarrow{O{P}_{1}}$=(m,$\frac{{S}_{m}}{m}$),$\overrightarrow{O{P}_{2}}$=(k,$\frac{{S}_{k}}{k}$),且$\overrightarrow{OP}$=λ$\overrightarrow{O{P}_{1}}$+μ$\overrightarrow{O{P}_{2}}$,已知m,n,k∈N*且互不相等,则用m,n,k表示μ=(  )
A.μ=$\frac{k-n}{k-m}$B.μ=$\frac{n-m}{n-k}$C.μ=$\frac{n-m}{k-m}$D.μ=$\frac{k-m}{k-n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某学校有教职工400名,从中选出40名教职工组成教工代表大会,每位教职工当选的概率是$\frac{1}{10}$,其中正确的是(  )
A.10个教职工中,必有1人当选
B.每位教职工当选的可能性是$\frac{1}{10}$
C.数学教研组共有50人,该组当选教工代表的人数一定是5
D.以上说法都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)是(x2+$\frac{1}{2x}$)6展开式的中间项,若存在x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]使f(x)≤mx成立,则实数m的取值范围是(  )
A.(-∞,$\frac{5}{4}$)B.(-∞,$\frac{5}{4}$]C.($\frac{5}{4}$,+∞)D.[$\frac{5}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O上三个不同点A,B,C,若$\overrightarrow{CO}=\overrightarrow{CA}•{sin^2}θ+\overrightarrow{CB}•{cos^2}θ$,则∠ACB=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=log2(1+ax)(a>0且a≠1).
(1)求f(x)的定义域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2-2x-3<0},B={x|x2<9},则(  )
A.A?BB.B?AC.A=BD.A∩B=Φ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ln(1+x)[2+ln(1+x)]-2x.
(1)证明:函数f(x)在区间(0,+∞)上单减;
(2)若不等式(n+$\frac{k}{2}$)ln(1+$\frac{1}{n}$)≤1对?∈N*都成立,求k+2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点,求证:B1C∥平面ODC1

查看答案和解析>>

同步练习册答案