精英家教网 > 高中数学 > 题目详情

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

【答案】B

【解析】A为一等奖,则甲,丙,丁的说法均错误,故不满足题意,

B为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,

C为一等奖,则甲,丙,丁的说法均正确,故不满足题意,

D为一等奖,则只有甲的说法正确,故不合题意,

故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B

故答案为:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知一个八面体的各条棱长为1,四边形ABCD为正方形,下列说法

①该八面体的体积为;

②该八面体的外接球的表面积为;

E到平面ADF的距离为;

ECBF所成角为60°;

其中不正确的个数为

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校要对如图所示的5个区域进行绿化(种花),现有4种不同颜色的花供选择,要求相邻区域不能种同一种颜色的花,则共有___________种不同的种花方法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是(
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD= ,M为BC上的一点,且BM= ,MP⊥AP.

(1)求PO的长;
(2)求二面角A﹣PM﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是(

A.90cm2
B.129cm2
C.132cm2
D.138cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记max{x,y}= ,min{x,y}= ,设 为平面向量,则(
A.min{| + |,| |}≤min{| |,| |}
B.min{| + |,| |}≥min{| |,| |}
C.max{| + |2 , | |2}≤| |2+| |2
D.max{| + |2 , | |2}≥| |2+| |2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=

(1)证明:DE⊥平面ACD;
(2)求二面角B﹣AD﹣E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名师生站成一排照相留念,其中教师1人,男生2人,女生2.

(1)求两名女生相邻而站的概率;

(2)求教师不站中间且女生不站两端的概率.

查看答案和解析>>

同步练习册答案