解:(Ⅰ)①如图,在直角坐标系xOy内做单位圆O,
并作出角α、β与-β,使角α的始边为Ox,
交⊙O于点P
1,终边交⊙O于P
2;角β的始边为OP
2,
终边交⊙O于P
3;角-β的始边为OP
1,终边交⊙O于P
4.
则P
1(1,0),P
2(cosα,sinα)
P
3(cos(α+β),sin(α+β)),
P
4(cos(-β),sin(-β))
由P
1P
3=P
2P
4及两点间的距离公式,得
[cos(α+β)-1]
2+sin
2(α+β)=[cos(-β)-cosα]
2+[sin(-β)-sinα]
2展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)
∴cos(α+β)=cosαcosβ-sinαsinβ;(4分)
②由①易得cos(
-α)=sinα,sin(
-α)=cosα
sin(α+β)=cos[
-(α+β)]=cos[(
-α)+(-β)]
=cos(
-α)cos(-β)-sin(
-α)sin(-β)
=sinαcosβ+cosαsinβ;(6分)
(Ⅱ)∵α∈(π,
),cosα=-
∴sinα=-
∵β∈(
,π),tanβ=-
∴cosβ=-
,sinβ=
cos(α+β)=cosαcosβ-sinαsinβ
=(-
)×(-
)-(-
)×
=
.
分析:(I)①建立单位圆,在单位圆中作出角,找出相应的单位圆上的点的坐标,由两点间距离公式建立方程化简整理既得;②由诱导公式cos[
-(α+β)]=sin(α+β)变形整理可得.
(II)
,求出角A的正弦,再由
,用cosC=-cos(A+B)求解即可.
点评:本小题主要考查两角和的正、余弦公式、诱导公式、同角三角函数间的关系等基础知识及运算能力.