精英家教网 > 高中数学 > 题目详情

【题目】已知圆以原点为圆心,且圆与直线相切.

(Ⅰ)求圆的方程;

(Ⅱ)若直线与圆交于两点,分别过两点作直线的垂线,交轴于两点,求线段的长.

【答案】(Ⅰ); (Ⅱ).

【解析】

(Ⅰ)化直线方程为一般式,利用点到直线的距离公式求出圆的半径,则圆的方程可求;

(Ⅱ)由点到直线距离公式求出OAB的距离,结合垂径定理求出AB,过C点作CEBD垂足为E,可得CEAB=2.结合yx+2的倾斜角为30°,求解三角形可得线段CD的长.

(Ⅰ)把直线化为一般式,得

原点到直线的距离

∴圆的半径,∴圆的方程为.

(Ⅱ)依题意画出示意图,如图.

到直线的距离

∵圆的半径为2,∴

点作垂足为,∴

又∵的倾斜角为,∴

,∴线段的长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x=4n+1,n∈Z}B={x|x=4n﹣3,n∈z},C={x|x=8n+1,n∈z},则A,B,C的关系是(
A.C是B的真子集、B是A的真子集
B.A是B的真子集、B是C的真子集
C.C是A的真子集、A=B
D.A=B=C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=2ln(x+m).
(1)当m=0,存在x0∈[ ,e](e为自然对数的底数),使 ,求实数a的取值范围;
(2)当a=m=1时,设H(x)=xf(x)+g(x),在H(x)的图象上是否存在不同的两点A(x1 , y1),B(x2 , y2)(x1>x2>﹣1),使得H(x1)﹣H(x2)= ?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(x+ ).求:
(1)f(﹣8);
(2)f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一条笔直公路上有AB两地,甲骑自行车从A地到B地,乙骑着摩托车从B地到A地,到达A地后立即按原路返回,如图是甲乙两人离A地的距离与行驶时间之间的函数图象,根据图象解答以下问题:

直接写出x之间的函数关系式不必写过程,求出点M的坐标,并解释该点坐标所表示的实际意义;

若两人之间的距离不超过5km时,能够用无线对讲机保持联系,求在乙返回过程中有多少分钟甲乙两人能够用无线对讲机保持联系;

若甲乙两人离A地的距离之积为,求出函数的表达式,并求出它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知平面直角坐标中,曲线的参数方程为为参数),直线的参数方程为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系.

(1)若,求直线以及曲线的极坐标方程;

(2)已知均在曲线上,且四边形为矩形为矩形,求其周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四人进行选择题解题比赛,已知每个选择题选择正确得分,否则得分.其测试结果如下:甲解题正确的个数小于乙解题正确的个数,乙解题正确的个数小于丙解题正确的个数,丙解题正确的个数小于丁解题正确的个数;且丁解题正确的个数的倍小于甲解题正确的个数的倍,则这四人测试总得分数最少为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)

男职工

女职工

总计

每周平均上网时间不超过4个小时

每周平均上网时间超过4个小时

70

总计

300

(Ⅰ)应收集多少名女职工样本数据?

(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:.试估计该公司职工每周平均上网时间超过4小时的概率是多少?

(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对应的边分别为,,

I)求角A,

II)求证:

III)若,且BC边上的中线AM长为,求的面积。

查看答案和解析>>

同步练习册答案