精英家教网 > 高中数学 > 题目详情

【题目】边长分别为1, ,2 的三角形的最大角与最小角的和是(
A.90°
B.120°
C.135°
D.150°

【答案】C
【解析】解:解法一:由题意可得,边长为1的边对的角最小为α,边长2 对的角最大为β,
由余弦定理可得cosα= = = ,cosβ= =﹣
∴sinα= ,sinβ= ,cos(α+β)=cosαcosβ﹣sinαsinβ=﹣ =﹣
∴α+β=135°,
故选:C.
解法二:由题意可得,边长为 的边对的角不是最大角、也不是最小角,设此角为θ,
则由余弦定理可得cosθ= = ,∴θ=45°,
故三角形的最大角与最小角的和是180°﹣45°=135°,
故选:C.
【考点精析】解答此题的关键在于理解余弦定理的定义的相关知识,掌握余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)若a=﹣1,求f(x)的单调区间;
(2)若f(x)有最大值3,求a的值.
(3)若f(x)的值域是(0,+∞),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形DCFE折起,使得平面DCFE⊥平面ABCD.
(1)证明:AC∥平面BEF;
(2)求三棱锥D﹣BEF的体积;
(3)求直线AF与平面BDF所求的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在x轴上,点 在圆C上,圆心到直线2x﹣y=0的距离为 ,则圆C的方程为(
A.(x﹣2)2+y2=3
B.(x+2)2+y2=9
C.(x±2)2+y2=3
D.(x±2)2+y2=9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线l1:2x﹣y﹣1=0与直线l2:x+2y﹣3=0的交点P,且与直线l3:x﹣y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆C:(x﹣a)2+y2=8相交于P,Q两点,且 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A= ,cosB=
(1)求cosC;
(2)设BC= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O:x2+y2=2,直线l:y=kx﹣2.
(1)若直线l与圆O交于不同的两点A,B,且 ,求k的值;
(2)若 ,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点分别为C,D,求证:直线CD过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过原点O,与x轴另一交点的横坐标为4,与y轴另一交点的纵坐标为2,
(1)求圆C的方程;
(2)已知点B的坐标为(0,2),设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

同步练习册答案