精英家教网 > 高中数学 > 题目详情
4.若点(-1,3)在偶函数y=f(x)的图象上,则f(1)等于(  )
A.0B.-1C.3D.-3

分析 利用偶函数的性质求解函数值即可.

解答 解:点(-1,3)在偶函数y=f(x)的图象上,则f(1)=3.
故选:C.

点评 本题考查函数的奇偶性的性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知n∈N*,设函数fn(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+…+(-1)n•$\frac{{x}^{n}}{n}$(x∈R).函数φ(x)=f3(x)+ax2的图象在点B(1,φ(1))处的切线的斜率为1.
(1)求a的值.
(2)求z的取值范围,使不等式φ(x)≤z对于任意x∈[0,2]恒成立;
(3)证明:存在无数个n∈N*,对任意给定的两个不同的x1,x2必有fn(x1)=fn(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:$\frac{tan(π+α)cos(π+α)si{n}^{2}(3π+α)}{ta{n}^{2}α•co{s}^{3}(-π-α)}$=-sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的焦点是F1(0,4),F2(0,-4),离心率是$\frac{2}{3}$
(1)求椭圆C的方程;
(2)设P是椭圆C上一点,若△PF1F2是直角三角形,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算:
(Ⅰ)[(-2)2]${\;}^{\frac{1}{2}}$-(-$\frac{1}{8}$)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2+$\sqrt{(1-\sqrt{2})^{2}}$
(Ⅱ)log3$\sqrt{27}$+lg25+lg4+7log72+lg1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.化根式$a\sqrt{a}$为分数指数幂的结果为(  )
A.${a^{\frac{3}{2}}}$B.${a^{\frac{2}{3}}}$C.${a^{\frac{3}{4}}}$D.${a^{\frac{4}{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式x2+2x<3的解集为(-3,1)(答案要求用集合形式表达)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若点O和点F分别为椭圆$\frac{x^2}{16}+\frac{y^2}{7}=1$的中心和左焦点,点P为椭圆上的任意一点,则$\overrightarrow{OP}•\overrightarrow{FP}$的最大值为(  )
A.18B.24C.28D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.现统计了100位居民月均用水量情况如表:
分组频数分组频数
[0,0.5)5[2,2.5)20
[0.5,1)10[2.5,3)15
[1,1.5)15[3,3.5)5
[1.5,2)25[3.5,4)5
(1)在用电量在[3,4)之间的10户中任取两户,这两户恰好都落在用电量在[3,3.5)的概率为多少?
(2)利用上述数据估计用电量的中位数(写过程)

查看答案和解析>>

同步练习册答案