【题目】在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、2倍后得到曲线.试写出直线的直角坐标方程和曲线的参数方程;
(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
科目:高中数学 来源: 题型:
【题目】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tan∠BCO=.
(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点到其焦点的距离为4,椭圆 的离心率,且过抛物线的焦点.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线于两不同点,交轴于点,已知, ,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中, 平面, .过的平面交于点,交于点.
(l)求证: 平面;
(Ⅱ)求证: ;
(Ⅲ)记四棱锥的体积为,三棱柱的体积为.若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列各项均为正数, , ,且对任意恒成立,记的前项和为.
(1)若,求的值;
(2)证明:对任意正实数, 成等比数列;
(3)是否存在正实数,使得数列为等比数列.若存在,求出此时和的表达式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数有极值,且在处的切线与直线垂直.
(1)求实数的取值范围;
(2)是否存在实数,使得函数的极小值为.若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中, 为坐标原点, 、是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点、,使得为定值,则该定值为________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com