精英家教网 > 高中数学 > 题目详情
如图为一组合体,其底面ABCD为正方形,PD⊥平面ABCD,ECPD,且PD=AD=2EC=2
(Ⅰ)求证:BE平面PDA;
(Ⅱ)求四棱锥B-CEPD的体积;
(Ⅲ)求该组合体的表面积.
(Ⅰ)证明:∵ECPD,PD?平面PDA,EC?平面PDA,∴EC平面PDA.
同理可证BC平面PDA.
∵EC?平面EBC,BC?平面EBC,且EC∩BC=C,∴平面BEC平面PDA.
又∵BE?平面EBC,∴BE平面PDA.
(Ⅱ)∵PD⊥平面ABCD,BC?平面ABCD,∴PD⊥BC.
∵BC⊥CD,PD∩CD=D,∴BC⊥平面PDCE.
∵S梯形PDCE=
1
2
(PD+EC)•DC=
1
2
×3×2=3,
∴四棱锥B-CEPD的体积VB-CEPD=
1
3
S梯形PDCE•BC=
1
3
×3×2
=2.
(Ⅲ)∵BE=PE=
5
PD=2
3

SPBE=
1
2
×2
3
×
2
=
6

又∵SABCD=4,SPDCE=3,SPDA=2,SBCE=1,SPAB=2
2

∴组合体的表面积为10+2
2
+
6
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

以下四个结论:
①若a?α,b?β,则a,b为异面直线;
②若a?α,b?α,则a,b为异面直线;
③没有公共点的两条直线是平行直线;
④两条不平行的直线就一定相交.
其中正确答案的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD,点M、N分别为侧棱PD、PC的中点
(1)求证:CD平面AMN;
(2)求证:AM⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD,E是棱PA的中点.
(1)求证:PC平面EBD;
(2)求三棱锥P-EBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a,b为两条直线,α,β为两个平面,下列四个命题
①ab,aα⇒bα;②a⊥b,a⊥α⇒bα;
③aα,βα⇒aβ;④a⊥α,β⊥α⇒aβ,
其中不正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1
,M是线段EF的中点.
(1)证明:CM平面DFB
(2)求异面直线AM与DE所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-OABC中,PO⊥底面OABC,∠OCB=60°,∠AOC=∠ABC=90°,且OP=OC=BC=2.
(1)若D是PC的中点,求证:BD平面AOP;
(2)求二面角P-AB-O的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.
(I)求四棱锥P-ABCD的体积;
(Ⅱ)如果E是PA的中点,求证:PC平面BDE;
(Ⅲ)探究:不论点E在侧棱PA的任何位置,BD⊥CE是否都成立?若成立,证明你的结论;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDE中,AE⊥平面ABC,BDAE,且AC=AB=BC=BD=2,AE=1,F在CD上(不含C,D两点)
(1)求多面体ABCDE的体积;
(2)若F为CD中点,求证:EF⊥面BCD;
(3)当
DF
FC
的值为多少时,能使AC平面EFB,并给出证明.

查看答案和解析>>

同步练习册答案