精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥 中, 底面 分别是 的中点, ,且 .

(1)求证: 平面
(2)在线段 上是否存在点 ,使二面角 的大小为 ?若存在,求出 的长;
若不存在,请说明理由.

【答案】
(1)证明:由
的中点,得
因为 底面 ,所以
中, ,所以
因此 ,又因为
所以
,即 ,因为 底面
所以 ,又 ,
,所以 平面 .
(2)解:假设满足条件的点 ,存在,
并设 ,以 为坐标原点,分别以 轴建立空间之间坐标系

,所以 ,所以
设平面 的法向量为
,取 ,得
,设平面 的法向量为
,取 ,得

由二面角 的大小为 ,得
化简得 ,又 ,求得 ,于是满足条件的点 存在,且 .

【解析】(1)根据题意由线面垂直的性质定理即可得到线线垂直,再由已知的线线垂直结合线面垂直的判定定理即可得证。(2)根据题意结合已知条件根据题意建立空间直角坐标系,求出各个点的坐标进而求出各个向量的坐标,设出平面AFG和平面AEF的法向量,由向量垂直的坐标运算公式可求出法向量,再利用向量的数量积运算公式求出余弦值进而得到t的值于是满足条件的点 G 存在。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,某同学选定了与A,B不共线的C处,构成△ABC,以下是测量的数据的不同方案:①测量∠A,AC,BC;②测量∠A,B,BC;③测量∠C,AC,BC;④测量∠AC,B. 其中一定能唯一确定A,B两地之间的距离的所有方案的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内一动点 到点 的距离与点 到 x 轴的距离的差等于1.
(1)求动点 的轨迹 的方程;
(2)过点 作两条斜率存在且互相垂直的直线 ,设 与轨迹 相交于点 与轨迹 相交于点 ,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥 中,平面 平面 分别为 的中点.

(1)求证: 平面
(2)求证:平面 平面 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题方程 表示焦点在 轴上的双曲线.
(1)命题 为真命题,求实数 的取值范围;
(2)若命题“ ”为真,命题“ ”为假,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数
(1)求函数 的最大值;
(2)对于任意 ,且 ,是否存在实数 ,使 恒成立,若存在求出 的范围,若不存在,说明理由;
(3)若正项数列 满足 ,且数列 的前 项和为 ,试判断 的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:①若,则②若,则③若,则④若,则的最小值为9;其中正确命题的序号是______(将你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题错误的是( )
A.命题“若 ,则 ”的逆命题为“若 ,则
B.对于命题 ,使得 ,则 ,则
C.“ ”是“ ”的充分不必要条件
D.若 为假命题,则 均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2a7a22成等比数列.

(1)求数列{an}的通项公式;

(2)设数列的前n项和为Tn,求证: Tn.

查看答案和解析>>

同步练习册答案