精英家教网 > 高中数学 > 题目详情
在直角△ABC中,两条直角边分别为a、b,斜边为c,则
c
a+b
的取值范围是
[
2
2
,1)
[
2
2
,1)
分析:所求式子利用正弦定理化简,将C度数及B=90°-A代入,利用诱导公式及两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的值域即可确定出范围.
解答:解:在Rt△ABC中,斜边为c,两条直角边为a,b,
可得∠C=90°,∠A+∠B=90°,
由正弦定理得:
c
a+b
=
sinC
sinA+sinB
=
sin90°
sinA+sinB
=
1
sinA+cosA
=
1
2
sin(A+45°)

∵A∈(0,90°),∴A+45°∈(45°,135°),
∴sin(A+45°)∈(
2
2
,1],
c
a+b
的取值范围是[
2
2
,1).
故答案为:[
2
2
,1)
点评:此题考查了正弦定理的应用,两角和与差的正弦函数公式,以及正弦函数的定义域与值域,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在直角△ABC中,两直角边的长分别为a,b,直角顶点C到斜边的距离为h,则易证
1
h2
=
1
a2
+
1
b2
.在四面体SABC中,侧棱SA,SB,SC两两垂直,SA=a,SB=b,SC=c,点S到平面ABC的距离为h,类比上述结论,写出h与a,b,c的等式关系并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泗阳县模拟)在直角△ABC中,两条直角边分别为a、b,斜边和斜边上的高分别为c、h,则
c+h
a+b
的取值范围是
(1,
3
2
4
]
(1,
3
2
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角△ABC中,两条直角边分别为a,b斜边和斜边上的高分别为c,h,则
c+ha+b
的最大值为
 

查看答案和解析>>

科目:高中数学 来源:2010-2011年重庆市高二下学期检测数学试卷 题型:填空题

.在直角△ABC中,两直角边AC=b,BC=a,CD⊥AB于D,

       把这个Rt△ABC沿CD折成直二面角A-CD-B后,

       cos∠ACB=          

 

查看答案和解析>>

同步练习册答案