精英家教网 > 高中数学 > 题目详情
9.曲线$y=-\sqrt{1-{x^2}}$与曲线y+|ax|=0(a∈R)的交点有2个.

分析 曲线$y=-\sqrt{1-{x^2}}$表示以原点为圆心,1为半径的下半圆,y+|ax|=0表示过原点的直线,即可得出两函数交点个数.

解答 解:曲线$y=-\sqrt{1-{x^2}}$表示以原点为圆心,1为半径的下半圆,y+|ax|=0表示过原点的直线,
∴两曲线交点个数为2个.
故答案为:2.

点评 此题考查了直线与圆相交的性质,利用了数形结合的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.对于使不等式f(x)≤M成立的所有常数M中,我们把M的最小值叫做函数f(x)的上确界.若a,b∈R+,a+b=1,则$-\frac{1}{2a}-\frac{2}{b}$的上确界为(  )
A.$-\frac{9}{2}$B.$\frac{9}{2}$C.$\frac{1}{4}$D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:x2-4x-5≤0,命题q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,p∨q为真命题,p∧q为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(-2,-1),B(2,1),直线AM,BM相交于点M,且它们的斜率之积为-$\frac{1}{2}$,点M的轨迹为曲线H.
(1)求曲线H的方程;
(2)过点P(-2,1)作斜率为k1,k2的两条直线l1,l2分别与曲线H交于C,D两点,且C,D关于原点对称,设点Q(-2,0)到直线l1,l2的距离分别为d1,d2且d1>d2,求k1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某几何体的三视图如图所示(单位:cm),则该几何体的体积是$\frac{16}{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow{b}$=(1,cosθ),θ∈(0,$\frac{π}{2}$)
(1)若$\overrightarrow{a}$$•\overrightarrow{b}$=$\frac{7}{3}$,求sinθ+cosθ的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sin(2θ+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A、B分别是左焦点为(-4,0)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点,且椭圆C过点P($\frac{3}{2}$,$\frac{5\sqrt{3}}{2}$).
(1)求椭圆C的方程;
(2)已知F是椭圆C的右焦点,以AF为直径的圆记为圆M,过P点能否引圆M的切线?若能,求出这条切线与x轴及圆M的弦PF所对的劣弧围成的图形面积;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}C}$,则椭圆的离心率为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知α是第二象限角,且cos(α+π)=$\frac{3}{13}$.
(1)求tanα的值;
(2)求sin(α-$\frac{π}{2}$)•sin(-α-π)的值.

查看答案和解析>>

同步练习册答案