精英家教网 > 高中数学 > 题目详情

【题目】已知点关于原点对称,恰为抛物线 的焦点,点在抛物线上,且线段的中点恰在轴上,的面积为8.若抛物线上存在点使得,则实数的最大值为( )

A. B. C. D.

【答案】C

【解析】设等腰直角三角形OAB的顶点A(x1,y1),B(x2,y2),则

由OA=OB得:

∴ (x1x2)(x1+x2+2p)=0,

∵x1>0,x2>0,2p>0,

∴x1=x2,即A,B关于x轴对称。

∴直线OA的方程为:y=xtan45=x,

与抛物线联立

故AB=4p,

∴S△OAB=×2p×4p=4p2.

∵△AOB的面积为16,∴p=2;

焦点F(,0),设P(m,n),则n2=2m,m>0,设P到准线x= 的距离等于d,

m的最大值为

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】李庄村电费收取有以下两种方案供农户选择:
方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.
方案二:不收管理费,每度0.58元.
(1)求方案一收费L(x)元与用电量x(度)间的函数关系;
(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?
(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)证明:f(x)≥5;

(2)若f(1)<6成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣
(1)求函数f(x)的定义域和值域;
(2)试判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点任作一条直线与椭圆相交于两点,试问在轴上是否存在定点,使得直线与直线关于轴对称?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加某项竞赛培训,在培训期间,他们参加的5项预赛成绩的茎叶图记录如下:

(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;

(2)现要从中选派一人参加该项竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,已知a= ,cosA= ,B=A+
(1)求b的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,其中是自然常数, .

(1)当时,求的极值,并证明恒成立;

(2)是否存在实数,使的最小值为 ?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案