【题目】已知点,关于原点对称,恰为抛物线: 的焦点,点在抛物线上,且线段的中点恰在轴上,的面积为8.若抛物线上存在点使得,则实数的最大值为( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】李庄村电费收取有以下两种方案供农户选择:
方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.
方案二:不收管理费,每度0.58元.
(1)求方案一收费L(x)元与用电量x(度)间的函数关系;
(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?
(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点任作一条直线与椭圆相交于,两点,试问在轴上是否存在定点,使得直线与直线关于轴对称?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位学生参加某项竞赛培训,在培训期间,他们参加的5项预赛成绩的茎叶图记录如下:
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(2)现要从中选派一人参加该项竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, ,其中是自然常数, .
(1)当时,求的极值,并证明恒成立;
(2)是否存在实数,使的最小值为 ?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com