【题目】已知动圆M与直线相切,且与圆外切,记动圆M的圆心轨迹为曲线C.
(1)求曲线C的方程;
(2)若直线l与曲线C相交于A,B两点,且(O为坐标原点),证明直线l经过定点H,并求出H点的坐标.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρ(1-cos2θ)=8cosθ,直线ρcosθ=1与曲线C相交于M,N两点,直线l过定点P(2,0)且倾斜角为α,l交曲线C于A,B两点.
(1)把曲线C化成直角坐标方程,并求|MN|的值;
(2)若|PA|,|MN|,|PB|成等比数列,求直线l的倾斜角α.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是( )
A. 这15天日平均温度的极差为
B. 连续三天日平均温度的方差最大的是7日,8日,9日三天
C. 由折线图能预测16日温度要低于
D. 由折线图能预测本月温度小于的天数少于温度大于的天数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆的参数方程为(为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线,,所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,DC⊥平面ABC,,,,P、Q分别为AE,AB的中点.
(1)证明:平面.
(2)求异面直线与所成角的余弦值;
(3)求平面与平面所成锐二面角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,.
(1)当时,判断曲线与曲线的位置关系;
(2)当曲线上有且只有一点到曲线的距离等于时,求曲线上到曲线距离为的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点分别在轴和轴上运动,且,若动点
满足,动点的轨迹为.
(1)求的方程;
(2)过点作动直线的平行线交轨迹于两点,则是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有人认为在机动车驾驶技术上,男性优于女性.这是真的么?某社会调查机构与交警合作随机统计了经常开车的名驾驶员最近三个月内是否有交通事故或交通违法事件发生,得到下面的列联表:
男 | 女 | 合计 | |
无 | 40 | 35 | 75 |
有 | 15 | 10 | 25 |
合计 | 55 | 45 | 100 |
附:.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
据此表,可得
A. 认为机动车驾驶技术与性别有关的可靠性不足
B. 认为机动车驾驶技术与性别有关的可靠性超过
C. 认为机动车驾驶技术与性别有关的可靠性不足
D. 认为机动车驾驶技术与性别有关的可靠性超过
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:
中学编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采购加工标准评分x | 100 | 95 | 93 | 83 | 82 | 75 | 70 | 66 |
卫生标准评分y | 87 | 84 | 83 | 82 | 81 | 79 | 77 | 75 |
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)
(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.
参考公式:,;
参考数据:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com