精英家教网 > 高中数学 > 题目详情

,(),曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ) 求函数的极值.

解析(1)
(2)处取得极大值
试题分析:(Ⅰ)
由于曲线在点处的切线垂直于轴,故该切线斜率为0,即

(Ⅱ)由(Ⅰ)知,
上为增函数;……………………9分
,故上为减函数;……………………12分
处取得极大值。…………………………………………………13分
考点:本题主要考查导数的几何意义:既在某点的导数为函数在这点切线的斜率和利用导数求函数的极值。
点评:利用导数的几何意义求切线的斜率是做第一问的关键,也是做第二问的基础。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数f(x)=lnx+
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设mR,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分) 已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,判断方程实根个数.
(3)若时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若的极值点,求上的最大值
(2)若函数是R上的单调递增函数,求实数的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数,其图象在点处的切线方程为.
(1)求的值;
(2)求函数的单调区间,并求出在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是实数,函数
(1)若,求的值及曲线在点处的切线方程;
(2)求在区间上的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数.
设关于x的不等式 的解集为且方程的两实根为.
(1)若,求的关系式;
(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
是定义在上的奇函数,函数的图象关于轴对称,且当时,
(I)求函数的解析式;
(II)若对于区间上任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)求函数的最值;
(2)对于一切正数,恒有成立,求实数的取值组成的集合。

查看答案和解析>>

同步练习册答案