精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程和的直角坐标方程;

2)直线与曲线分別交于第一象限内两点,求.

【答案】1.2

【解析】

1)由曲线的参数方程,消去参数,求得曲线普通方程,再结合极坐标与直角坐标的互化公式,即可求得曲线的极坐标方程,进而根据极坐标与直角坐标的互化,求得曲线的直角坐标方程.

2)设,分别求得,根据极坐标的几何意义,即可求解.

1)由题意,曲线的参数方程为为参数),即

平方相加,可得曲线,即

又由

代入,可得曲线的极坐标方程为

曲线的极坐标方程为,可得

所以曲线的直角坐标方程为,即.

2)依题意可设

所以,且,即

所以

因为点在第一象限,所以,即

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为实现有效利用扶贫资金,增加贫困村民的收入,扶贫工作组结合某贫困村水质优良的特点,决定利用扶贫资金从外地购买甲、乙、丙三种鱼苗在鱼塘中进行养殖试验,试验后选择其中一种进行大面积养殖,已知鱼苗甲的自然成活率为0.8.鱼苗乙,丙的自然成活率均为0.9,且甲、乙、丙三种鱼苗是否成活相互独立.

1)试验时从甲、乙,丙三种鱼苗中各取一尾,记自然成活的尾数为,求的分布列和数学期望;

2)试验后发现乙种鱼苗较好,扶贫工作组决定购买尾乙种鱼苗进行大面积养殖,为提高鱼苗的成活率,工作组采取增氧措施,该措施实施对能够自然成活的鱼苗不产生影响.使不能自然成活的鱼苗的成活率提高了50%.若每尾乙种鱼苗最终成活后可获利10元,不成活则亏损2元,且扶贫工作组的扶贫目标是获利不低于37.6万元,问需至少购买多少尾乙种鱼苗?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”…江南梅雨的点点滴滴都流露着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南20092018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

1)计算的值,并用样本平均数估计镇明年梅雨季节的降雨量;

2镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅这10年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你完善列联表,帮助老李排解忧愁,试想来年应种植哪个品种的杨梅受降雨量影响更小?并说明理由.

亩产量\降雨量

200400之间

200400之外

合计

2

1

合计

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线与直线垂直,求实数a的值;

2)若函数上单调递增,求实数a的取值范围;

3)当时,若方程有两个相异实根,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,其焦距为,点在椭圆上,,直线的斜率为为半焦距)·

1)求椭圆的方程;

2)设圆的切线交椭圆两点(为坐标原点),求证:

3)在(2)的条件下,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱台中,底面是菱形,底面,且是棱的中点.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4一4:坐标系与参数方程

在平面直角坐标系xOy中,曲线的参数方程为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线 是圆心的极坐标为()且经过极点的圆

(1)求曲线C1的极坐标方程和C2的普通方程;

(2)已知射线分別与曲线C1,C2交于点A,B(点B异于坐标原点O),求线段AB的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对时下的抖音热某校团委对学生性别和喜欢抖音是否有关作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人

附表:

0.050

0.010

3.841

6.635

附:

A.20B.40C.60D.80

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形,点在面内的射影为,点到平面的距离为,且直线垂直.

(Ⅰ)在棱上找一点,使直线与平面平行,并说明理由;

(Ⅱ)在(Ⅰ)的条件下,求二面角的大小.

查看答案和解析>>

同步练习册答案