精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=lnx+ x2
(1)求曲线f(x)在x=1处的切线方程;
(2)设P为曲线f(x)上的点,求曲线C在点P处切线的斜率的最小值及倾斜角α的取值范围.

【答案】
(1)解:∵f(x)=lnx+ x2

∴f′(x)= + x,

x=1时,f′(1)= ,f(1)=

∴曲线f(x)在x=1处的切线方程为y﹣ = (x﹣1),即10x﹣8y﹣9=0


(2)解:x>0,f′(x)= + x≥1,

∴曲线C在点P处切线的斜率的最小值为1,倾斜角α的取值范围为[


【解析】(1)求导数,确定切线的斜率,即可求曲线f(x)在x=1处的切线方程;(2)求导数,确定切线的斜率的范围,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCDABCD′中:

(1)求二面角D′-ABD的大小;
(2)若MCD′的中点,求二面角MABD的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,两个正方形 所在平面互相垂直,设 分别是 的中点,那么

; ② 平面 ;③ ;④ 异面,其中假命题的个数为( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足a1= ,2Sn﹣SnSn1=1(n≥2).
(1)求S1 , S2 , S3 , S4并猜想Sn的表达式(不必写出证明过程);
(2)设bn= ,n∈N*,求bn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左右顶点分别为A,B,点P为椭圆上异于A,B的任意一点.
(Ⅰ)求直线PA与PB的斜率之积;
(Ⅱ)过点 作与x轴不重合的任意直线交椭圆E于M,N两点.证明:以MN为直径的圆恒过点A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥V﹣ABC中,VA=VB=AC=BC=2,AB=2 ,VC=1,线段AB的中点为D.

(1)求证:平面VCD⊥平面ABC;
(2)求三棱锥V﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点H(x0 , y0)在圆C:x2+y2+Dx+Ey+F=0(其中点C为圆心,D2+E2﹣4F>0)外,由点H向圆C引切线,其中一个切点为M.
求证:|HM|=
(1)已知点H(x0 , y0)在圆C:x2+y2+Dx+Ey+F=0(其中点C为圆心,D2+E2﹣4F>0)外,由点H向圆C引切线,其中一个切点为M.
求证:|HM|=
(2)如图,P是直线x=4上一动点,以P为圆心的圆P经定点B(1,0),直线l是圆P在点B处的切线,过A(﹣1,0)作圆P的两条切线分别与l交于E,F两点.
求证:|EA|+|EB|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{cn}的前n项和,an=2n , bn=50﹣3n,cn=
(1)求c4与c8的等差中项;
(2)当n>5时,设数列{Sn}的前n项和为Tn
(ⅰ)求Tn
(ⅱ)当n>5时,判断数列{Tn﹣34ln}的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x2+x+1),求函数f(x)的单调区间及极值.

查看答案和解析>>

同步练习册答案