精英家教网 > 高中数学 > 题目详情

【题目】已知直角梯形 分别是边上的点沿折起并连接成如图的多面体折后

(Ⅰ)求证:

(Ⅱ)若折后直线与平面所成角的正弦值是求证平面平面

【答案】(Ⅰ)见解析;(Ⅱ)见解析.

【解析】试题分析:(Ⅰ)由 可得平面,从而,结合,根据线面垂直的判定定理可得; 平面,所以;(Ⅱ)作,连,由(Ⅰ)知,即与平面所成角,设 ,而直线与平面所成角的正弦值是,即,以 为轴建立坐标系,取的中点,先证明平面的法向量是,再利用向量垂直数量积为零可得平面的法向量,根据空间向量夹角的余弦公式可得结果.

试题解析:(Ⅰ)∵

平面

平面

(Ⅱ)由(Ⅰ)知,可如图建立空间直角坐标系,

由(Ⅰ)知

与平面所成角

而直线与平面所成角的正弦值是

(或:平面的法向量是

).

易知平面平面的中点平面

则平面的法向量是

(或另法求出平面的法向量是),

再求出平面的法向量

设二面角

∴平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知函数其中

求曲线在点处的切线方程

)证明: 在区间上恰有个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点到点的距离和它到直线的距离相等,记点的轨迹为.

(Ⅰ)求得方程;

(Ⅱ)设点在曲线上, 轴上一点(在点右侧)满足.平行于的直线与曲线相切于点,试判断直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a11a2an1anan10 (n≥2,且nN*),若数列{an1λan}是等比数列.

(1)求实数λ

(2)求数列{an}的通项公式;

(3),求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为的正方形(及其内部)绕旋转一周形成圆柱,如图, 长为 长为,其中在平面的同侧.

(1)求三棱锥的体积;

(2)求异面直线所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,设圆4 cos 与直线l (R)交于AB两点.

求以AB为直径的圆的极坐标方程

(Ⅱ)在圆任取一点,在圆上任取一点,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形, 交于点 底面,点中点, .

(1)求直线所成角的余弦值;

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们可以用随机模拟的方法估计的值,如图程序框图表示其基本步骤(函数是产生随机数的函数,它能随机产生内的任何一个实数).若输出的结果为,则由此可估计的近似值为( )

A. 3.119 B. 3.124 C. 3.132 D. 3.151

查看答案和解析>>

同步练习册答案