精英家教网 > 高中数学 > 题目详情

【题目】《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市对全市10万名市民进行了汉字听写测试,调查数据显示市民的成绩服从正态分布.现从某社区居民中随机抽取50名市民进行听写测试,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组,第二组,…,第六组,如图是按上述分组方法得到的频率分布直方图.

(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;

(2)已知第1组市民中男性有3名,组织方要从第1组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性群众的概率.

【答案】(Ⅰ)0.25;(Ⅱ)

【解析】试题分析:(Ⅰ)由频率分布直方图中所有小矩形的面积和为,求得第组频率值,再与第组频率求和,频率即为概率;(Ⅱ)先由频率求出第组的人组,可得其中男女各人,可列举出所有的基本事件,再找出其中含有女性的基本事件,利用古典概型可求得概率..

试题解析:(Ⅰ)设第1组[20,30)的频率为f1,则由题意可知,

f1=1﹣(0.010+0.035+0.030+0.020)×10=0.05,

被采访人恰好在第1组或第4组的频率为(0.05+0.020)×10=0.25,

∴估计被采访人恰好在第1组或第4组的概率为0.25,

(Ⅱ)第1组[20,30)的人数为0.05×120=6,

∴第1组中共有6名市民,其中女性市民共3名,

记第1组中的3名男性市民分别为A,B,C,3名女性市民分别为x,y,z,

从第1组中随机抽取2名市民组成宣传队,共有15个基本事件,列举如下:AB,AC,Ax,Ay,Az,BC,Bx,By,Bz,Cx,Cy,Cz,xy,xz,yz,

至少有1名女性Ax,Ay,Az,Bx,By,Bz,Cx,Cy,Cz,xy,xz,yz共12个基本事件,∴从第1组中随机抽取2名市民组成宣传务队,至少有1名女性的概率为=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)为定义在R奇函数,当x>0时,f(x)=﹣2x2+4x+1,
(1)求:当x<0时,f(x)的表达式;
(2)用分段函数写出f(x)的表达式;
(3)若函数h(x)=f(x)﹣a恰有三个零点,求a的取值范围(只要求写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣lnx﹣1,g(x)=k(f(x)﹣x)+ ,(k∈R).
(1)求曲线y=f(x)在(2,f(2))处的切线方程;
(2)求函数g(x)的单调区间;
(3)当1<k<3,x∈(1,e)时,求证:g(x)>﹣ (1+ln3).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos x,sin x), =(cos x,﹣sin x),且x∈[0, ].求:
(1)
(2)若f(x)= ﹣2λ 的最小值是﹣ ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.根据以往经验某选手投掷一次命中8环以上的概率为.现采用计算机做模拟实验来估计该选手获得优秀的概率: 用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在 8 环以上,用2,3,4,5,6,7,8,9表示该次投掷在 8 环以上,经随机模拟试验产生了如下 20 组随机数:

907 966 191 925 271 932 812 458 569 683

031 257 393 527 556 488 730 113 537 989

据此估计,该选手投掷 1 轮,可以拿到优秀的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以为顶点的六面体中, 均为等边三角形,且平面平面 平面 .

(1)求证: 平面

(2)求此六面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左焦点与抛物线的焦点重合,直线与以原点为圆心,以椭圆的离心率为半径的圆相切.

(Ⅰ)求该椭圆的方程;

(Ⅱ)设点坐标为,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程 表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,
(1)若命题p为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在定义域[﹣1,1]是奇函数,当x∈[﹣1,0]时,f(x)=﹣3x2
(1)当x∈[0,1],求f(x);
(2)对任意a∈[﹣1,1],x∈[﹣1,1],不等式f(x)≤2cos2θ﹣asinθ+1都成立,求θ的取值范围.

查看答案和解析>>

同步练习册答案