精英家教网 > 高中数学 > 题目详情

【题目】已知数列都是等差数列,.数列满足.

1)求的通项公式;

2)证明:是等比数列;

3)是否存在首项为1,公比为q的等比数列,使得对任意,都有成立?若存在,求出q的取值范围;若不存在,请说明理由.

【答案】1;(2)证明见解析;(3)存在,.

【解析】

1)设的公差为d,可得, 由是等差数列,可得成等差数列,可得,求出的值,可得的通项公式;

2)将展开,可得,将代入此式子相减,可得,再将代入此式子相减,可得,此时,验证时也满足可得是等比数列;

3)设存在对任意,都有恒成立,即,易得,由由得,,可得设,对其求导,可得其最小值,可得q的取值范围.

解:(1)因为数列是等差数列,设的公差为d,则

因为是等差数列,所以成等差数列,

解得,当时,,此时是等差数列.

.

2)由,即, ①

所以, ②

②-①得,, ③

所以,, ④

④-③得,,即时,

在①中分别令得,,也适合上式,

所以

因为是常数,所以是等比数列.

3)设存在对任意,都有恒成立,

显然,由可知,

得,.

,因为

所以当时,递增;

时,递减.

因为,所以

解得

综上可得,存在等比数列,使得对任意,都有恒成立, 其中公比的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其图象与轴交于不同两点,且.

1)求实数的取值范围;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数且).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为

1)求直线的极坐标方程及曲线的直角坐标方程;

2)若点在直线上,点在曲线上,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,AD//平面BCC1B1ADDB.求证:

1BC//平面ADD1A1

2)平面BCC1B1⊥平面BDD1B1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人某天的工作是:驾车从地出发,到两地办事,最后返回地,三地之间各路段行驶时间及当天降水概率如表:

路段

正常行驶所需时间(小时)

上午降水概率

下午降水概率

2

0.3

0.6

2

0.2

0.7

3

0.3

0.9

若在某路段遇到降水,则在该路段行驶的时间需延长1小时,现有如下两个方案:

方案甲:上午从地出发到地办事,然后到达地,下午在地办事后返回地;

方案乙:上午从地出发到地办事,下午从地出发到达地, 办事后返回.

1)设此人8点从地出发,在各地办事及午餐的累积时间为2小时.且采用方案甲,求他当日18点或18点之前能返回地的概率;

2)甲、乙两个方案中,哪个方案有利于办完事后能更早返回地?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国一带一路战略构思提出后,某科技企业为抓住一带一路带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本万元,当年产量不足60台时,万元;当年产量不小于60台时,万元若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.

求年利润万元关于年产量的函数关系式;

当年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆截直线所得的线段的长度为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,的参数方程为t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.

1)求的普通方程和曲线C的直角坐标方程;

2)求曲线C上的点到距离的最大值及该点坐标.

查看答案和解析>>

同步练习册答案