精英家教网 > 高中数学 > 题目详情
10.设a,b,c∈(1,+∞),证明:2($\frac{lo{g}_{b}a}{a+b}$+$\frac{lo{g}_{c}b}{b+c}$+$\frac{lo{g}_{a}c}{c+a}$≥$\frac{9}{a+b+c}$.

分析 利用基本不等式的性质即可得出.

解答 解:∵a,b,c∈(1,+∞),
∴lga,lgb,lgc>0.
∴(a+b+a+c+b+c)$(\frac{lga}{(a+b)lgb}+\frac{lgb}{(b+c)lgc}+\frac{lgc}{(c+a)lga})$≥3$\root{3}{(a+b)(a+c)(b+c)}$•3$\root{3}{\frac{lga}{(a+b)lgb}•\frac{lgb}{(b+c)lgc}•\frac{lgc}{(c+a)lga}}$=9,当且仅当a=b=c>1时取等号.
∴2($\frac{lo{g}_{b}a}{a+b}$+$\frac{lo{g}_{c}b}{b+c}$+$\frac{lo{g}_{a}c}{c+a}$≥$\frac{9}{a+b+c}$.

点评 本题查克拉基本不等式的性质,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.数列{an}前n项和为Sn,且an+Sn=-2n-1(n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=log2$\frac{1}{{a}_{n}+2}$,证明:$\sum_{k=1}^{n}\frac{1}{{b}_{k}{b}_{k+1}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=$\frac{3}{2}$n2+$\frac{3}{2}$n.
(1)求数列{an}的通项公式;
(2)记Tn=$\frac{{a}_{n}{•a}_{n+1}}{{2}^{n}}$,若对于一切的正整数n,总有Tn≤m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.方程x2-2(m-1)x+3m2=11没有实数根,求m解的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在三棱锥P-ABC中,PA⊥面ABC,∠ABC=90°,若AD⊥PB,垂足为D,AE⊥PC,垂足为E,求证:AD⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=cos(ωx+$\frac{π}{2}$)在[0,$\frac{π}{4}$]上为增函数,则ω的取值范围为(  )
A.[-2,0)B.[-3,0)C.[-2,2]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(ax+y)(x-y)6的展开式中x4y3的系数为-35,则a=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将下列三角函数转化为锐角三角函数,并填在题中横线上:
(1)cos210°=-cos30°;
(2)sin263°42′=-sin83°42′;
(3)cos(-$\frac{π}{6}$)cos$\frac{π}{6}$; 
(4)sin(-$\frac{5}{3}$π)=sin$\frac{π}{3}$;
(5)cos(-$\frac{11}{9}$π)=-cos$\frac{π}{9}$;
(6)cos(-104°26′)=-sin14°26′;
(7)tan632°24′=-tan87°36′;
(8)tan$\frac{17π}{6}$=-tan$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有下列关系:(1)人的年龄与他(她)体内脂肪含量之间的关系;(2)曲线上的点与该点的坐标之间的关系;(3)红橙的产量与气候之间的关系;(4)学生与他(她)的学号之间的关系.其中有相关关系的是(  )
A.(1)、(2)B.(1)、(3)C.(1)、(4)D.(3)、(4)

查看答案和解析>>

同步练习册答案