【题目】下列说法中不正确的是________.(填序号)
①若a∈R,则“<1”是“a>1”的必要不充分条件;
②“p∧q为真命题”是“p∨q为真命题”的必要不充分条件;
③若命题p:“x∈R,sin x+cos x≤”,则p是真命题;
④命题“x0∈R,+2x0+3<0”的否定是“x∈R,x2+2x+3>0”.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax(a>0,a≠1)在区间[﹣1,2]上的最大值为8,最小值为m.若函数g(x)=(3﹣10m) 是单调增函数,则a= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正四棱锥P﹣ABCD中,AB=2,PA= ,E是棱PC的中点,过AE作平面分别与棱PB、PD交于M、N两点.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直线PA与平面AMEN所成角的正弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正三棱柱ABC﹣A1B1C1中,点D是BC的中点.
(1)求证:A1C∥平面AB1D;
(2)设M为棱CC1的点,且满足BM⊥B1D,求证:平面AB1D⊥平面ABM.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的各项都是正数,且对任意n∈N*都有a13+a23+a33+…+an3=Sn2 , 其中Sn为数列{an}的前n和.
(1)求证:an2=2Sn﹣an;
(2)求数列{an}的通项公式
(3)设bn=3n+(﹣1)n﹣1λ2 (λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆E: (a>b>0)过点( ,1),且与直线 x+2y﹣4=0相切.
(1)求椭圆E的方程;
(2)若椭圆E与x轴交于M、N两点,椭圆E内部的动点P使|PM|、|PO|、|PN|成等比数列,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中, AD与BC交于点M,设,以、为基底表示
【答案】
【解析】试题分析:由A、M、D三点共线,知;由C、M、B三点共线,知
,所以,所以=.
试题解析:
设,
则
因为A、M、D三点共线,所以,即
又
因为C、M、B三点共线,所以,即
由解得,所以
【题型】解答题
【结束】
20
【题目】函数的最小值为.
(1)求;
(2)若,求及此时的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:2a1+22a2+23a3+…+2nan=n(n∈N*),数列{ }的前n项和为Sn , 则S1S2S3…S10= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为 (θ为参数),曲线 C2的极坐标方程为ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲线C1的普通方程和曲线 C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com