精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆 其左右焦点为过点的直线交椭圆两点,线段的中点为 的中垂线与轴和轴分别交于两点,且构成等差数列.

(1)求椭圆的方程;

(2)记的面积为 为原点的面积为试问:是否存在直线使得说明理由.

【答案】(1);(2).

【解析】试题分析:

1)由题意得,所以,于是可得椭圆的方程.(2)假设存在直线满足条件.将转化为,可根据题意设出直线的方程,将直线方程代入椭圆方程消元后可得二次方程,结合根与系数的关系和两点间的距离可得关于(直线斜率)的方程,解方程可得的值,由此判断结论是否成立即可.

试题解析

(1)因为构成等差数列,

所以,所以

又因为

所以

所以椭圆的方程为

(2)假设存在直线,使得,显然直线不能与, 轴垂直.

方程为

消去y整理得

显然

,则

故点的横坐标为

所以

,因为,所以

解得,即

相似,且

整理得

解得,所以

所以存在直线满足条件,且直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,侧棱垂直于底面, 分别是的中点.

1)求证: 平面平面

2)求证: 平面

3)求三棱锥体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在R上的奇函数,,若单调递减,则不等式的解集为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面,且, 是棱的中点,点在侧棱上运动.

(1)当是棱的中点时,求证: 平面

(2)当直线与平面所成的角的正切值为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆的方程为,以为极点, 轴非负半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)求直线的直角坐标方程和椭圆的参数方程;

(2)设为椭圆上任意一点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,平面是线段的中点,.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点的直线交椭圆于两点,过点作直线的垂线,垂足为连接当直线的倾斜角发生变化时,直线轴是否相交于定点?若是,求出定点坐标,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n是两条不同直线,是三个不同平面,给出下列四个命题:①若m⊥n,则m//n;②若////m,则m⊥;③若m//n//,则m//n;④,则//.其中正确命题的序号是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是同一球面上的四点,是边长为6的等边三角形,若三棱锥体积的最大值为,则该球的表面积为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案