精英家教网 > 高中数学 > 题目详情
(2007•淄博三模)甲、乙两人玩数字游戏,先由甲心中任想一个数字,记为a,再有乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4,5},若|a-b|≤1,则称甲乙“心有灵犀”,现任意找两个玩这个游戏,得出他们“心有灵犀”的概率为
13
25
13
25
分析:本题是一个古典概型,试验包含的所有事件是任意找两人玩这个游戏,其中满足条件的满足|a-b|≤1的情形包括6种,列举出所有结果,根据计数原理得到共有的事件数,根据古典概型概率公式得到结果.
解答:解:由题意知本题是一个古典概型,
∵试验包含的所有事件是任意找两人玩这个游戏,共有5×5=25种猜字结果,
其中满足|a-b|≤1的有如下情形:
①若a=1,则b=1,2;②若a=2,则b=1,2,3;
③若a=3,则b=2,3,4;④若a=4,则b=3,4,5;
⑤若a=5,则b=4,5,
总共13种,
∴他们“心有灵犀”的概率为
13
25

故答案为
13
25
点评:本题是古典概型问题,属于高考新增内容,解本题的关键是准确的分类,得到他们“心有灵犀”的各种情形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•淄博三模)已知双曲线x2-
y2
a
=1(a>0)
的一条渐近线与直线x-2y+3=0垂直,则该双曲线的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•淄博三模)在二项式(
x
+
3
x
)n
的展开式中,各项系数之和为A,各项二项式系数之和为B,且A+B=72,则展开式中常数项的值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•淄博三模)正方体ABCD-A1B1C1D1的棱长为1,在正方体表面上与点A距离是
2
3
3
的点形成一条曲线,这条曲线的长度是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•淄博三模)在△ABC中,a,b,c是内角A,B,C的对边,且b2=ac,cosB=
34

(1)求cotA+cotC的值;
(2)求sinA:sinB:sinC的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•淄博三模)复数z1=2+i,z2=-1+i,则
z1
z2
的共轭复数对应点在(  )

查看答案和解析>>

同步练习册答案