精英家教网 > 高中数学 > 题目详情
12.对于顶点在原点的抛物线,给出下列条件;
(1)焦点在y轴正半轴上;
(2)焦点在x轴正半轴上;
(3)抛物线上横坐标为1的点到焦点的距离等于6;
(4)抛物线的准线方程为$x=-\frac{5}{2}$
其中适合抛物线y2=10x的条件是(要求填写合适条件的序号)(2)(4).

分析 抛物线y2=10x,焦点在x轴正半轴上,抛物线的准线方程为$x=-\frac{5}{2}$,即可得出结论.

解答 解:抛物线y2=10x,焦点在x轴正半轴上,抛物线的准线方程为$x=-\frac{5}{2}$.
故答案为(2)(4).

点评 本题考查抛物线的方程与性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.我市每年中考都要举行实验操作考试和体能测试,初三某班共有30名学生,下表为该班学生的这两项成绩,例如表中实验操作考试和体能测试都为优秀的学生人数为6人.由于部分数据丢失,只知道从这班30人中随机抽取一个,实验操作成绩合格,且体能测试成
实验操作
不合格合格良好优秀



不合格0011
合格021b
良好1a24
优秀1236
绩合格或合格以上的概率是$\frac{1}{5}$.
(Ⅰ)试确定a、b的值;
(Ⅱ)从30人中任意抽取3人,设实验操作考试和体能测试成绩都是良好或优秀的学生人数为ξ,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线2x-y+a=0与3x+y-3=0交于第一象限,当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.面对某种流感病毒,各国医疗科研机构都在研究疫苗,现有A、B、C三个独立的研究机构在一定的时期研制出疫苗的概率分别为$\frac{1}{5}$、$\frac{1}{4}$、$\frac{1}{3}$.求:
(1)他们能研制出疫苗的概率;
(2)至多有一个机构研制出疫苗的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.相传这个图形表达了阿基米德最引以自豪的发现.我们来重温这个伟大发现.经计算球的体积等于圆柱体积的$\frac{2}{3}$倍.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$2sin(4x+ϕ)(0<ϕ<\frac{π}{2})$的图象经过点(0,$\sqrt{3}$).
(1)求f($\frac{19π}{12}$)的值;
(2)若$f(\frac{1}{4}α-\frac{π}{12})=\frac{2}{3}$,$α∈({\frac{π}{2},π})$,$f(\frac{1}{4}β-\frac{5π}{24})=\frac{{2\sqrt{10}}}{10}$;β是第三象限角,求cos(α-β)的值;
(3)在(2)的条件下,求$\sqrt{tan\frac{α}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在实数集R上函数y=f(x)的反函数为y=f-1(x).若函数y=f(-x)的反函数是y=f-1(-x),则y=f(-x)是(  )
A.是奇函数,不是偶函数B.是偶函数,不是奇函数
C.既是奇函数数,又是偶函数D.既不是奇函数,也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某校1000名学生中,O型血有400人,A型血有300人,B型血有200人,AB型血有100人,为了研究血型与性格的关系,按照分层抽样的方法从中抽取样本.如果从A型血中抽取了12人,则从AB型血中应当抽取的人数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为(1,0),离心率为$\frac{1}{2}$.
(1)求椭圆C的标准方程;
(2)过点P(0,3)的直线m与C交于A、B两点,若A是PB的中点,求直线m的方程.

查看答案和解析>>

同步练习册答案