精英家教网 > 高中数学 > 题目详情

已知函数 数学公式(a≥0).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上不是单调函数,求实数a的取值范围;
(3)当数学公式时,方程数学公式有实根,求实数b的最大值.

解:(1)由函数
得:
=
=
因为x=2为f(x)的极值点,所以f(2)=0.
,解得:a=0.
又当a=0时,f(x)=x(x-2),从而x=2为f(x)的极值点成立.
(2)由函数f(x)的定义域可知,必须有2ax+1>0对x≥3恒成立,故只能a≥0,
由于
所以,令g(x)=2ax2+(1-4a)x-(4a2+2).
则g(x)>0与g(x)<0在区间[3,+∞)上都有解,
由a≥0知,g(x)>0一定有解,又g(x)的对称轴为
因此只要g(3)<0即说明g(x)<0在区间[3,+∞)上都有解,
由g(3)<0得,4a2-6a-1>0,解得:
因为a≥0,所以
综上所述,a的取值范围是(,+∞).
(3)若a=时,方程可化为:
问题转化为b=xlnx-x(1-x)2+x(1-x)=xlnx+x2-x3在(0,+∞)上有解,
即求函数g(x)=xlnx+x2-x3的值域.
因为g(x)=x(lnx+x-x2),令h(x)=lnx+x-x2(x>0),

当0<x<1时,h(x)>0,h(x)在(0,1)上为增函数,
当x>1时,h(x)<0,h(x)在(1,+∞)上为减函数,
因此h(x)≤h(1)=0.
而x>0,故b=x•h(x)≤0,
因此,当x=1时,b取得最大值0.
所以,当时,使方程有实根的b的最大值为0.
分析:(1)求出函数f(x)的导函数,由x=2为f(x)的极值点,所以f(2)=0,由此列式求出实数a的值;
(2)根据函数y=f(x)在[3,+∞)上不是单调函数,说明当x∈[3,+∞)时函数有意义,据此判断出a≥0,根据(1)中求出的函数的导函数,由导函数大于0和小于0在[3,+∞)上都有解既能说明y=f(x)在[3,+∞)上不是单调函数;然后由导函数大于0和小于0在[3,+∞)上都有解求出a的范围取交集;
(3)把代入函数解析式,整理方程,分离出变量b,问题转化为求函数值域问题.
点评:本题考查了利用导函数研究函数的极值,考查了函数的零点与方程根的关系,考查了分类讨论思想和数学转化思想,函数在给定的区间上不是单调函数,说明函数的导函数在该区间上不同号,此题有一定难度,属难题.
练习册系列答案
相关习题

科目:高中数学 来源:2008-2009学年四川省成都七中高三数学专项训练:指数、对数函数(解析版) 题型:解答题

已知函数(a≠0且a≠1).
(1)试就实数a的不同取值,写出该函数的单调递增区间;
(2)已知当x>0时,函数在上单调递减,在上单调递增,求a的值并写出函数的解析式;
(3)(理)记(2)中的函数的图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出l的方程;若不存在,请说明理由.
(文) 记(2)中的函数的图象为曲线C,试问曲线C是否为中心对称图形?若是,请求出对称中心的坐标并加以证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年广东省高考冲刺预测数学试卷13(理科)(解析版) 题型:解答题

已知函数(a≠0且a≠1).
(Ⅰ)试就实数a的不同取值,写出该函数的单调递增区间;
(Ⅱ)已知当x>0时,函数在上单调递减,在上单调递增,求a的值并写出函数的解析式;
(Ⅲ)记(Ⅱ)中的函数的图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2015届福建省高一上学期期中考试数学试卷(解析版) 题型:解答题

对于函数,若存在x0∈R,使方程成立,则称x0的不动点,已知函数a≠0).

(1)当时,求函数的不动点;

(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

 

查看答案和解析>>

科目:高中数学 来源:2010年福建省高一上学期期中考试数学卷 题型:解答题

(本小题满10分)注意:第(3)小题平行班学生不必做,特保班学生必须做。对于函数,若存在x0∈R,使成立,则称x0的不动点。已知函数a≠0)。

(1)当时,求函数的不动点;

(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

(3)(特保班做) 在(2)的条件下,若图象上AB两点的横坐标是函数的不动点,且AB两点关于点对称,求的的最小值。

 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(浙江卷)解析版(文) 题型:选择题

 [番茄花园1]  已知函数 =

(A)0                (B)1                (C)2                (D)3

 


 [番茄花园1]1.

查看答案和解析>>

同步练习册答案