精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数),在极坐标系中,圆C的极坐标方程为:

(1)求圆C的直角坐标方程;

(2)设圆C与直线交于两点,若点的坐标为,求的最小值.

【答案】(1) ; (2).

【解析】

(1)利用极坐标公式把圆C的极坐标方程化为直角坐标方程.(2) 将l的参数方程代入圆C的直角坐标方程,得t2+2(cos α-sin α)t-7=0,利用弦长公式求出|PA|+|PB|=|t1|+|t2|=|t1-t2|=,再求其最小值.

(1)由ρ=6sin θ得ρ2=6ρsin θ,化为直角坐标方程为x2+y2=6y,即x2+(y-3)2=9.

所以圆C的直角坐标方程为x2+(y-3)2=9.

(2)将l的参数方程代入圆C的直角坐标方程,得t2+2(cos α-sin α)t-7=0.

由已知得Δ=(2cos α-2sin α)2+4×7>0,

所以可设t1,t2是上述方程的两根,则

由题意得直线l过点(1,2),结合t的几何意义得|PA|+|PB|=|t1|+|t2|=|t1-t2|

====2.

所以|PA|+|PB|的最小值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面,且, 是棱的中点,点在侧棱上运动.

(1)当是棱的中点时,求证: 平面

(2)当直线与平面所成的角的正切值为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题,其中正确的命题序号是________.

①当时,函数取得最大值,则

②已知菱形的中点,且,则菱形面积的最大值为12

③已知二次函数,如果,则实数的取值范围是

④在三棱锥中,,点分别是的中点,则异面直线所成的角的余弦值是

⑤数列满足,且数列的前2010项的和为403,记数列是数列的前项和,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2-2x+1.

(1)试讨论函数f(x)的单调性;

(2)若a≤1,且f(x)在[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a),求g(a)的表达式;

(3)在(2)的条件下,求证:g(a)≥.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数=Asin(A>0,>0,<)在处取得最大值2,其图象与x轴的相邻两个交点的距离为

(1)求的解析式;

(2)求函数 的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着我市经济的快速发展,政府对民生越来越关注市区现有一块近似正三角形的土地(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形,其中分别相切于点,且无重叠,剩余部分(阴影部分)种植草坪.长为(单位:百米),草坪面积为(单位:万平方米).

1)试用分别表示扇形的面积,并写出的取值范围;

2)当为何值时,草坪面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点为圆心的圆过原点.

1)设直线与圆交于点,若,求圆的方程;

2)在(1)的条件下,设,且分别是直线和圆上的动点,求的最大值及此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足

(1)求证:AN⊥平面PBM;

(2)AQ⊥PB,垂足为Q,求证:NQ⊥PB.

查看答案和解析>>

同步练习册答案