精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2﹣2lnx.
(1)求证:f(x)在(1,+∞)上单调递增.
(2)若f(x)≥2tx﹣ 在x∈(0,1]内恒成立,求实数t的取值范围.

【答案】
(1)解:证明:函数的定义域为(0,+∞),f′(x)=2x﹣ =

由f′(x)>0,得x>1,由f′(x)<0,得0<x<1,

所以,函数f(x)在区间(1,+∞)上单调递增


(2)解:由f(x)≥2tx﹣ 对x∈(0,1]恒成立,得2t≤x+

令h(x)=x+ ,则h′(x)=

因为x∈(0,1],所以x4﹣3<0,﹣2x2<0,

2x2lnx<0,x4>0,

所以h′(x)<0,

所以h(x)在(0,1)上为减函数.

所以当x=1时,h(x)=h(x)=x+ ,有最小值2,得2t≤2,

所以t≤1,故t的取值范围是(﹣∞,1]


【解析】(1)先求函数的导数,根据导数和函数的单调性的关系即可求出,(2)要求若f(x)≥2tx﹣ 在x∈(0,1]内恒成立,即转化为2t≤x+ 在x∈(0,1]内恒成立,只需求h(x)=x+ x∈(0,1]内的最小值即可.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f'(x)在R上恒有f'(x)<1(x∈R),则不等式f(x)>x+1的解集为(
A.(1,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱和一个正四棱锥组合而成,.

(1)证明:平面平面

(2)求正四棱锥的高,使得该四棱锥的体积是三棱锥体积的4倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2 + sinωx﹣ (ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是(
A.(0, ]
B.(0, ]∪[
C.(0, ]
D.(0, ]∪[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 +cos2x+a(a∈R,a为常数). (Ⅰ)求函数的最小正周期;
(Ⅱ)求函数的单调递减区间;
(Ⅲ)若 时,f(x)的最小值为﹣2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:

等级

不合格

合格

得分

频数

6

24

(Ⅰ)求 的值;

(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为,求的分布列及数学期望

(Ⅲ)某评估机构以指标,其中表示的方差)来评估该校安全教育活动的成效.若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的多面体中, 平面平面

1)请在图中作出平面,使得,且,并说明理由;

2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)≥ ,则f(x)< + 的解集为(
A.{x|x<1}
B.{x|x>1}
C.{x|x<﹣1}
D.{x|x>﹣1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角A,B,C所对的边分别是a,b,c,且.

1)证明:sinAsinB=sinC;

2)若,求tanB.

查看答案和解析>>

同步练习册答案