精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,侧棱底面,底面为矩形,的上一点,且为PC的中点.

(Ⅰ)求证:平面AEC;
(Ⅱ)求二面角的余弦值.

(Ⅰ)利用直线的向量与平面的法向量垂直证明线面平行,(Ⅱ)

解析试题分析:建立如图所示空间直角坐标系,设,则


(Ⅰ)设平面AEC的一个法向量为,∵
,令,得,又
平面AEC∴平面AEC
(Ⅱ)由(Ⅰ)知平面AEC的一个法向量为
为平面ACD的法向量,而
故二面角的余弦值为
考点:本题考查了空间中的线面关系及二面角的求法
点评:立体几何问题主要是探求和证明空间几何体中的平行和垂直关系以及空间角、体积等计算问题.对于平行和垂直问题的证明或探求,其关键是把线线、线面、面面之间的关系进行灵活的转化.在寻找解题思路时,不妨采用分析法,从要求证的结论逐步逆推到已知条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=

(1)求直线D1B与平面ABCD所成角的大小;
(2)求证:AC⊥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体棱长为1,的中点,的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:; (2)求证:
(3)设中点,在边上找一点,使平面,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE
折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥P-ABC中, AB="AC=4," D、E、F分别为PA、PC、BC的中点, BE="3," 平面PBC⊥平面ABC, BE⊥DF.

(Ⅰ)求证:BE⊥平面PAF;
(Ⅱ)求直线AB与平面PAF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求D、C之间的距离;
(2) 求CD与面ABC所成的角的大小;
(3) 求证:对于AD上任意点H,CH不与面ABD垂直。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)
如图所示,正方形与矩形所在平面互相垂直,,点E为的中点。

(Ⅰ)求证:     
(Ⅱ) 求证:
(Ⅲ)在线段AB上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是边长为2的正方形,,且中点.

(Ⅰ)求证:平面;    
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上是否存在点,使得点到平
的距离为?若存在,确定点的位置;
若不存在,请说明理由.

查看答案和解析>>

同步练习册答案