精英家教网 > 高中数学 > 题目详情
16.求证:(1)sin($\frac{3π}{2}$-α)=-cosα;
(2)cos($\frac{3π}{2}$+α)=sinα.

分析 由已知条件利用余弦函数加法定理和正弦函数加法定理即可证明.

解答 证明:(1)sin($\frac{3π}{2}$-α)=sin$\frac{3π}{2}$cosα-cos$\frac{3π}{2}$sinα=-cosα;
(2)cos($\frac{3π}{2}$+α)=cos$\frac{3π}{2}$cosα-sin$\frac{3π}{2}$sinα=sinα.

点评 本题考查三角函数的化简证明,是基础题,解题时要认真审题,注意余弦函数加法定理和正弦函数加法定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在哈尔滨的中央大街的步行街同侧有6块广告牌,牌的底色可选用红、蓝两种颜色,若要求相邻两块牌的底色不都为蓝色,则不同的配色方案共有(  )
A.20B.21C.22D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{4}({x}^{2}-6x+10),x≥0}\\{{3}^{x}+2x,x<0}\end{array}\right.$,则函数y=f(x)的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lg(x-a)的定义域为A,集合B={y|y=2x-1,x∈R}.
(1)若A=B,求实数a的值;
(2)若(∁RA)∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=loga(2-ax)在[0,4]上为增函数,则b=4的取值范围是(  )
A.$({0,\frac{1}{2}})$B.(0,1)C.$({\frac{1}{2},1})$D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$f(x)=\frac{sin2x}{{{e^{|x|}}}}$的大致图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=xlnx,g(x)=x2-1.
(1)求证:当x≥1时,f(x)≤$\frac{1}{2}$g(x)
(2)若当x≥1时,f(x)-mg(x)≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)如图1,矩形ABCD中AB=1,AD>1且AD长不定,将△BCE沿CE折起,使得折起后点B落到AD边上,设∠BCE=θ,CE=L,求L关于θ的函数关系式并求L的最小值.
(2)如图2,矩形ABCD中AB=1.将矩形折起,使得点B与点F重合,当点F取遍CD边上每一个点时,得到的每一条折痕都与边AD、CB相交,求边AD长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x>0,y>0,x+y=2,求证:(1+$\frac{1}{x}$)(1+$\frac{1}{y}$)≥4.

查看答案和解析>>

同步练习册答案