精英家教网 > 高中数学 > 题目详情
若椭圆mx2+ny2=1(m>0,n>0)与直线x+y-1=0交于A,B两点,若m:n=1:
2
,则过原点与线段AB的中点M的连线的斜率为
 
考点:椭圆的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:设A(x1,y1),B(x2,y2),代入椭圆方程,作差运用平方差公式和中点坐标公式,化简整理,即可得到直线OM的斜率.
解答: 解:设A(x1,y1),B(x2,y2),
则mx12+ny12=1,mx22+ny22=1,
两式相减可得,m(x1-x2)(x1+x2)+n(y1-y2)(y1+y2)=0,
由于线段AB的中点为M(x0,y0),
则x1+x2=2x0,y1+y2=2y0
则有kAB=
y1-y2
x1-x2
=-
mx0
ny0
=-1,
则kOM=
y0
x0
=
m
n
=
2
2

故答案为:
2
2
点评:本题考查椭圆的方程的运用,考查直线的斜率公式,点差法求中点弦问题,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

变量x,y满足约束条件
x-y≥1
x+y≤4
y≥1
,目标函数z=2x+4y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C的方程为
x2
4
-y2=1,其渐近线为l1,l2
(1)设P(x0,y0)为双曲线上一点,P到l1,l2距离分别为d1,d2,求证:d1d2为定值
(2)斜率为1的直线l交双曲线C于A,B两点,若
OA
OB
=
20
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且过点(
3
1
2
).
(1)求椭圆C的方程;
(2)设椭圆的左、右顶点分别为A、B,点S是椭圆上位于x轴上方的动点,直线AS,BS与直线l:x=
34
15
分别交于M、N两点,求线段MN长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数C的离心率为
2
2
,且椭圆C的左焦点F1与抛物线y2=-4x的焦点重合.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点F1(-1,0),F2(1,0)到一斜率存在的动直线l的距离之距离之积为1,试问直线l是否与椭圆C一定有唯一的公共点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,y轴正半轴上的点列{An}与曲线y=
2x
(x>0)上的点列{Bn}满足|OAn|=|OBn|=
1
n
,直线AnBn
在x轴上的截距为an,点Bn的横坐标为bn,n∈N*
(1)证明:an>an+1>4,n∈N*
(2)证明:存在n0∈N*,使得对任意的n>n0,都有
b2
b1
+
b3
b2
+…+
bn
bn-1
+
bn+1
bn
<n-2004.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1+sinx
1-sinx
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在边长为2的正方形ABCD中,E为边AB的中点,P为以A为圆心、AB为半径的圆弧上的任意一点,设向量
AP
=x
DE
+y
AC
,则x+y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(3,1),在抛物线y2=2x上找一点P,使得|PF|+|PA|取最小值(F为抛物线的焦点),此时点P的坐标是
 

查看答案和解析>>

同步练习册答案