精英家教网 > 高中数学 > 题目详情

一个空间几何体的三视图如下左图所示,则该几何体的表面积为(   )

A.48 B.48+8 C.32+8 D.80 

B

解析试题分析:观察三视图可知,该几何体为四棱柱,底面为梯形,两底边长分别为,高为,所以,底面梯形的腰长为,棱柱的高为.所以,该几何体的表面积为,故选
考点:三视图,几何体的表面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示.                    
(1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;
(2)若棱锥E-DFC的体积为,求的值;
(3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的体积与侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

菱形的边长为3,交于,且.将菱形沿对角线折起得到三棱锥(如图),点是棱的中点,

(1)求证:平面平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体中,平面平面是边长为2的正三角形,
,且.

(1)求证:
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.四边形都是边长为的正方形,点的中点,平面.

(1)求证:平面平面;
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如图所示,其中M,N分别是AB,AC的中点,G是DF上的一动点.

(1)求该多面体的体积与表面积;
(2)求证:GN⊥AC;
(3)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.

(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥PBDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,ABCD是正方形,平面ABCD,E,F是AC,PC的中点.

(1)求证:
(2)若,求三棱锥的体积.

查看答案和解析>>

同步练习册答案