精英家教网 > 高中数学 > 题目详情
7.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},则A∩B=(  )
A.{x|2<x<3}B.{x|1<x<3}C.{x|3<x<4}D.{x|1<x<4}

分析 求出A中不等式的解集确定出A,找出A与B的交集即可.

解答 解:由A中不等式解得:1<x<3,即A={x|1<x<3},
∵B={x|2<x<4},
∴A∩B={x|2<x<3},
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.化简:$\frac{5}{\sqrt{45}}$+$\frac{1}{\sqrt{5}-2}$-($\sqrt{5}$+2)0-$\sqrt{9-4\sqrt{5}}$=$\frac{\sqrt{5}}{3}$+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-3,4),则$\overrightarrow{a}$+$\overrightarrow{b}$=(  )
A.(-1,5)B.(1,5)C.(-1,-3)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,已知∠A=45°,∠B=60°,a=2,则b=(  )
A.$\sqrt{6}$B.2$\sqrt{6}$C.3$\sqrt{6}$D.4$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=(a2-3a+2)+(1-a2)i(a∈R)为纯虚数,则z的虚部为(  )
A.-3B.2C.3D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若定义域为R的奇函数f(x)满足f(x+2)=f(x),且在(-3,-2)上单调递减,则(  )
A.f($\frac{3}{4}$)<f($\frac{1}{2}$)B.f($\frac{3}{4}$)>f($\frac{1}{2}$)
C.f($\frac{3}{4}$)=f($\frac{1}{2}$)D.f($\frac{3}{4}$)与f($\frac{1}{2}$)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.计算 $-i+\frac{1}{i}$=-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设方程x2+ax+b-2=0,在(-∞,-2)∪[2,+∞)上有实根,则a2+b2的取值范围[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设二次函数f(x)=ax2-(b-5)x-a-ab,不等式f(x)>0的解集是(-4,2).
(1)求f(x);
(2)当函数f(x)的定义域是[t,t+2]时,求函数f(x)的最大值g(t).

查看答案和解析>>

同步练习册答案