分析 利用“乘1法”与基本不等式的性质即可得出.
解答 解:∵a>0,b>0,且a+b=2,
则$\frac{1}{a}+\frac{9}{b}$=$\frac{1}{2}(a+b)$$(\frac{1}{a}+\frac{9}{b})$=$\frac{1}{2}(10+\frac{b}{a}+\frac{9a}{b})$$≥\frac{1}{2}(10+2\sqrt{\frac{b}{a}•\frac{9a}{b}})$=$\frac{1}{2}×(10+6)$=8,当且仅当b=3a=$\frac{3}{2}$时取等号.
故答案为:8.
点评 本题考查了“乘1法”、基本不等式的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 函数g(x)在区间$[{0,\frac{π}{2}}]$上单调递增 | B. | 函数f(x)与g(x)的最小正周期均为π | ||
C. | 函数g(x)在区间$[{0,\frac{π}{2}}]$上的最大值为$\frac{{\sqrt{3}}}{2}$ | D. | 函数g(x)的对称中心为$({\frac{Kπ}{2}+\frac{π}{6},0})$(K∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $z=\frac{1}{5}x-y$ | B. | z=3x+y | C. | $z=-\frac{1}{5}x-y$ | D. | z=3x-y |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|x>-2} | B. | {x|x<-2} | C. | {x|x>-1} | D. | {x|x≤-2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com