【题目】某车间生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该车间制造电子元件的过程中,次品率与日产量的函数关系是:.
(1)写出该车间的日盈利额(元)与日产量(件)之间的函数关系式;
(2)为使日盈利额最大,该车间的日产量应定为多少件?
【答案】(1);(2)当时,最大,即该厂的日产量定为16件,能获得最大盈利.
【解析】
试题(1))由题意可知次品率P=日产次品数÷日产量,每天生产x件,次品数为xP,正品数为x(1-P),即可写出函数;(2)利用导数求导,令导数为0,即可求出函数的最值.
试题解析:
(1)由题意可知次品率P=日产次品数÷日产量,每天生产x件,次品数为xP,
正品数为x(1-P).
因为次品率P=,当每天生产x件时,
有x·件次品,有x件正品,
所以T=200x-100x·
=25·.
(2)T′=-25·,
由T′=0,得x=16或x=-32(舍去)
当0<x<16时,T′>0;当x>16时,T′<0;
所以当x=16时,T最大,即该厂的日产量定为16件,能获得最大盈利.
科目:高中数学 来源: 题型:
【题目】某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:
①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;
②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;
③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包;
④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包;
⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.
(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖);
(2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);
(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某河流上的一座水力发电站,每年六月份的发电量(单位:万千瓦时)与该河上游在六月份的降雨量(单位:毫米)有关据统计,当时, ; 每增加10, 增加5.已知近20年的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.
(1)完成如下的频率分布表:近20年六月份降雨量频率分布表
(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com