精英家教网 > 高中数学 > 题目详情

【题目】如图,已知在四棱锥中,平面,点在棱上,且,底面为直角梯形, 分别是的中点.

(1)求证://平面

(2)求直线与平面所成角的正弦值;

(3)求点到平面的距离.

【答案】(1)见证明;(2) (3)

【解析】

(1)法一:构造平行四边形,利用三角形中位线定理,证明平行,即可.法二:建立空间坐标系,计算各点坐标,计算平面PBC的法向量,结合向量数量积公式,即可.(2)利用向量数量积公式,代入坐标,即可.(3)结合向量数量积公式,代入,即可.

(1)法一:,则//,

依题意得,//,,

所以为平行四边形,

//

平面 平面, ∴//平面

法二:以为原点,以分别为建立空间直角坐标系

分别是的中点,可得:

设平面的的法向量为

则有:

,则

,又平面

//平面

(2)设平面的的法向量为

则有:

,则

∴求直线 与平面所成的角的正弦值为

(3)

∴点到平面的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间,需求量为100台;最低气温位于区间,需求量为200台;最低气温位于区间,需求量为300台。公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:

最低气温(℃)

天数

11

25

36

16

2

以最低气温位于各区间的频率代替最低气温位于该区间的概率.

求11月份这种电暖气每日需求量(单位:台)的分布列;

若公司销售部以每日销售利润(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一个负数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).

6

7

6

7

8

5

6

7

8

(Ⅰ)试估计班学生人数;

(Ⅱ)从班和班抽出来的学生中各选一名,记班选出的学生为甲,班选出的学生为乙,若学生锻炼相互独立,求甲的锻炼时间大于乙的锻炼时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)若不过原点的直线与椭圆相交于两点,与直线相较于点,且是线段的中点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中,角的对边分别为

)若,求面积的最大值;

)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断函数的奇偶性,并加以证明;

2)用定义证明上是减函数;

3)函数上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义满足不等式|xA|BARB0)的实数x的集合叫做AB邻域.若a+btt为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)对任意实数xy恒有f(x)f(y)f(xy),且当x0时,f(x)0,又f(1)=-.

(1)求证:f(x)为奇函数;

(2)求证:f(x)R上是减函数;

(3)f(x)[36]上的最大值与最小值.

查看答案和解析>>

同步练习册答案