精英家教网 > 高中数学 > 题目详情
已知
m
=(
3
sinx,2cosx),
n
=(2cosx,-cosx)
,函数f(x)=
m
n
-1

(Ⅰ) 求函数f(x)的最小正周期和对称轴的方程;
(Ⅱ)设△ABC的角A,B,C的对边分别为a,b,c,且a=1,f(A)=0,求b+c的取值范围.
(Ⅰ)由题意可得f(x)=
3
sin2x-2cos2x-1

=
3
sin2x-cos2x-2
=2sin(2x-
π
6
)-2
.…(2分)
故f(x)的最小正周期为π,…(3分)
2x-
π
6
=kπ+
π
2
(k∈Z)得对称轴的方程为x=
1
2
kπ+
π
3
,k∈Z
.…(4分)
(Ⅱ)由f(A)=0得2sin(2A-
π
6
)-2=0
,即sin(2A-
π
6
)=1

-
π
6
<2A-
π
6
11π
6
,∴2A-
π
6
=
π
2
,∴A=
π
3
,…(6分)
由正弦定理得b+c=
2
3
(sinB+sinC)=
2
3
[sinB+sin(
3
-B)]
=2sin(B+
π
6
)
…(8分)
A=
π
3
,∴B∈(0,
3
),B+
π
6
∈(
π
6
6
)

sin(B+
π
6
)∈(
1
2
,1]

∴b+c的取值范围为(1,2].…(10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定义函数f(x)=
m
n
-
1
2

(1) 求函数.f(x)的最小正周期,值域,单调增区间.
(2) 设△ABC的三内角A,B,C所对的边分别为a、b、c,且c=
3
,f(C)=0,若
d
=(1,sinA)与
e
=(2,sinB)
共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(
3
sinx,2cosx),
n
=(2cosx,-cosx)
,函数f(x)=
m
n
-1

(Ⅰ) 求函数f(x)的最小正周期和对称轴的方程;
(Ⅱ)设△ABC的角A,B,C的对边分别为a,b,c,且a=1,f(A)=0,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定义函数f(x)=
m
n
-
1
2

(1)求函数f(x)的最小正周期,值域,单调增区间.
(2)设△ABC的三内角A,B,C所对的边分别为a、b、c,且c=
3
,f(C)=0,若向量
d
=(1,sinA)与 
e
=(2,sinB)共线,求边a,b的值及△ABC的面积S?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知 
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定义函数f(x)=
m
n
-
1
2

(1)求函数f(x)的最小正周期,值域,单调增区间.
(2)设△ABC的三内角A,B,C所对的边分别为a、b、c,且c=
3
,f(C)=0,若向量
d
=(1,sinA)与 
e
=(2,sinB)共线,求边a,b的值及△ABC的面积S?

查看答案和解析>>

同步练习册答案