精英家教网 > 高中数学 > 题目详情
如图,已知直角梯形ABCD的上底BC=
2
,BC∥AD,BC=
1
2
AD
CD⊥AD,PDC⊥,平面平面ABCD,△PCD是边长为2的等边三角形.
(1)证明:AB⊥PB;
(2)求二面角P-AB-D的大小.
(3)求三棱锥A-PBD的体积.
分析:(1)由已知中中在直角梯形ABCD中,因为AD=2
2
,BC=
2
,CD=2,我们易求出AB值,双由为BC⊥CD,平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,则BC⊥平面PDC,再由勾定理得到,我们可得AB⊥PB;
(2)设线段DC的中点为E,连接PE,EB,结合△PCD是等边三角形,平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,我们易得AB⊥PE,AB⊥PB,则∠PBE就是二面角P-AB-D的平面角,解△PBE即可得到答案.
(3)VA-PBD=VP-ABD,求出棱锥的底面面积及高,代入棱锥体积公式即可得到答案.
解答:证明:(1)在直角梯形ABCD中,因为AD=2
2
,BC=
2
,CD=2
所以AB=
(AD-BC)2+CD2
=
6

因为BC⊥CD,平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,所以BC⊥平面PDC,因此在Rt△BCP中,PB=
BC2+PC2
=
6

因为BC∥AD所以AD⊥平面PDC,所以在Rt△PAD中,
PA=
AD2+PD2
=
(2
2
)2+22
=
12

所以在△PAB中,PA2=AB2+PB2,所以AB⊥PB.
解:(2)设线段DC的中点为E,连接PE,EB
因为△PCD是等边三角形,所以PE⊥C,
因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,所以PE⊥平面ABCD,因此AB⊥PE,由(1)知AB⊥PB,所以AB⊥平面PEB,所以AB⊥BE,因此∠PBE就是二面角P-AB-D的平面角,在Rt△PBE中,
sin∠PBE=
PE
PB
=
3
6
=
2
2
,所以∠PBE=
π
4

解:(3)∵VA-PBD=VP-ABD=
1
3
S△ABD•PE
=
1
3
×
1
2
•AD•DC•
3
=
1
3
×
1
2
×2
2
×2×
3
=
2
6
3
点评:本题考查的知识点是直线与平面垂直的性质,棱锥的体积,二面角平面角的求法,在求二面角时,根据三垂线定理找到二面角的平面角是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:AB∥平面PCD
(2)求证:BC⊥平面PAC
(3)求二面角A-PC-D的平面角a的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=90,PA=PB,PC=PD.
(Ⅰ)证明CD与平面PAD不垂直;
(Ⅱ)证明平面PAB⊥平面ABCD;
(Ⅲ)如果CD=AD+BC,二面角P-BC-A等于60°,求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源:高三数学教学与测试 题型:044

如图,已知直角梯形ABCD中,AB⊥BC,AB=AD=a,BC=3a,E是BC边上一动点,以DE为棱把△CDE折起,使其成直二面角C-DE-A,求四棱锥C-ABED体积的最大值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直角梯形ABCD的上底BC=,BC∥AD,BC=AD,CD⊥AD,平面PDC⊥平面ABCD,△PCD是边长为2的等边三角形.

(1)证明:AB⊥PB;

(2)求三棱锥A-PBD的体积.

查看答案和解析>>

同步练习册答案