精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2-xlnx-(2a-1)x+a-1(a∈R)
(1)当a=0时,求函数f(x)在点P(e,f(e))处的切线方程;
(2)对任意的x∈[1,+∞),函数f(x)≥0恒成立,求实数a的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(1)把a=0代入函数解析式,求导后得到函数在点P(e,f(e))处的切线的斜率,然后利用直线方程的点斜式得答案;
(2)由f(x)≥0,得ax2-xlnx-(2a-1)x+a-1≥0,求出函数的导函数,导函数在x=1处,的导数为0,然后由导函数的导函数在[1,+∞)上大于0求得a的范围,就是满足函数f(x)≥0恒成立的实数a的取值范围.
解答: 解:(1)a=0时,f(x)=-xlnx+x-1,
f′(x)=-lnx,∴f′(e)=-lne=-1,
又f(e)=-elne+e-1=-1,
∴函数f(x)在点P(e,f(e))处的切线方程为:y+1=-1×(x-e),即x+y+1-e=0;
(2)由f(x)≥0,得ax2-xlnx-(2a-1)x+a-1≥0,
f′(x)=2ax-2a-lnx,令g(x)=2ax-2a-lnx,
g(x)=2a-
1
x
=
2ax-1
x

∵f′(1)=0,
∴只要g′(x)≥0,就有g(0)≥0,且g(x)单调递增,即f(x)≥f(1)=0.
∴2ax-1≥0,a
1
2

∴实数a的取值范围是[
1
2
,+∞).
点评:本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,二次求导是解答该题的关键,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:1+cos2θ+2sin2θ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

记数列{an}的前n项和为Sn(n∈N*),若存在实常数A,B,C,对于任意正整数n,都有an+Sn=An2+Bn+C成立.
(1)已知A=B=0,a1≠0,求证:数列{an}(n∈N*)是等比数列;
(2)已知数列{an}(n∈N*)是等差数列,求证:3A+C=B;
(3)已知a1=1,B>0且B≠1,B+C=2.设λ为实数,若?n∈N*,
an
an+1
<λ,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-a)2+(y-b)2=r2(b>0),圆心在抛物线y2=4x上,经过点A(3,0),且与抛物线的准线相切,则圆C的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(2x+φ)的图象向左平移
π
3
单位后为奇函数,则φ的最小正值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),若函数f(x)的图象上存在两点B、C到点A的距离相等,则称该函数f(x)为“点距函数”,给定下列三个函数:①y=-x+2(-1≤x≤2);②y=
9-(x+1)2
;③y=x+4(x≤-
5
2
).其中,“点距函数”的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的准线与直线x+y-3=0以及x轴围成三角形面积为8,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x不等式|2x-1|-|x-2|<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,若PD=4,DC=DB=3,PB=PC=5,AD⊥DB
(1)求证:AD⊥PB;
(2)点E,F,G分别是AB,AP,PC的中点,过E,F,G的平面交BC于H,求线段GH的长.

查看答案和解析>>

同步练习册答案