精英家教网 > 高中数学 > 题目详情

【题目】下图是某地区2009年至2018年芯片产业投资额 (单位:亿元)的散点图,为了预测该地区2019年的芯片产业投资额,建立了与时间变量的四个线性回归模型.根据2009年至2018年的数据建立模型①;根据2010年至2017年的数据建立模型②;根据2011年至2016年的数据建立模型③;根据2014年至2018年的数据建立模型④.则预测值更可靠的模型是(

A.B.C.D.

【答案】D

【解析】

根据散点图特征根据2014年至2018年的数据建立模型更具有可靠性.

根据散点图可以发现,2013年到2014年出现明显的增长,且前后几年的增长速率差异明显,若要进行对2019年的预测,显然根据2014年至2018年的数据建立模型更具有可靠性.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某医院对治疗支气管肺炎的两种方案AB进行比较研究,将志愿者分为两组,分别采用方案A和方案B进行治疗,统计结果如下:

有效

无效

合计

使用方案A

96

120

使用方案B

72

合计

32

(1)完成上述列联表,并比较两种治疗方案有效的频率;

(2)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?

附:.

P()

0.005

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,,当n≥2时,其前n项和满足,设数列的前n项和为,则满足≥5的最小正整数n是( )

A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,斜率为1的直线过抛物线的焦点F,与抛物线交于AB两点且M为抛物线弧AB上的动点.

求抛物线的方程;

的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD2AB4EBC的中点,现将△BAE与△DCE折起,使得平面BAE及平面DEC都与平面ADE垂直.

1)求证:BC∥平面ADE

2)求二面角ABEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.

(1)用表示甲同学连续三次答题中答对的次数,求随机变量的分布列和数学期望;

(2)设为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将4本不同的书随机放入如图所示的编号为1,2,3,4的四个抽屉中.

1

2

3

4

(Ⅰ)求4本书恰好放在四个不同抽屉中的概率;

(Ⅱ)随机变量表示放在2号抽屉中书的本数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国多地区遭遇了雾霾天气,引起口罩热销.某品牌口罩原来每只成本为6元.售价为8元,月销售5万只.

1)据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润月销售总收入月总成本),该口罩每只售价最多为多少元?

2)为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价元,并投入万元作为营销策略改革费用.据市场调查,每只售价每提高0.5元,月销售量将相应减少万只.则当每只售价为多少时,下月的月总利润最大?并求出下月最大总利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】狄利克雷是19世纪德国著名的数学家,他定义了一个“奇怪的函数”,下列关于狄利克雷函数的叙述正确的有:______.

的定义域为,值域是 具有奇偶性,且是偶函数

是周期函数,但它没有最小正周期 ④对任意的

查看答案和解析>>

同步练习册答案