已知双曲线-=1(b∈N*)的左、右两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1||PF2|=|F1F2|2,|PF2|<4.
(1)求b的值;
(2)抛物线y2=2px(p>0)的焦点与该双曲线的右顶点重合,斜率为1的直线经过右顶点,与该抛物线交于A、B两点,求弦长|AB|.
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为,点M的横坐标为.
(1)求椭圆C的标准方程;
(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1·k2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求直线m的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.
(1)若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圆C的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆+=1(a>b>0),点P(a,a)在椭圆上.
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
我们把离心率为e=的双曲线(a>0,b>0)称为黄金双曲线.如图,是双曲线的实轴顶点,是虚轴的顶点,是左右焦点,在双曲线上且过右焦点,并且轴,给出以下几个说法:
①双曲线x2-=1是黄金双曲线;
②若b2=ac,则该双曲线是黄金双曲线;
③如图,若∠F1B1A2=90°,则该双曲线是黄金双曲线;
④如图,若∠MON=90°,则该双曲线是黄金双曲线.
其中正确的是( )
A.①②④ | B.①②③ | C.②③④ | D.①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,
点(1,)在该椭圆上.
(1)求椭圆C的方程;
(2)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知的三个顶点都在抛物线上,且抛物线的焦点满足,若边上的中线所在直线的方程为(为常数且).
(1)求的值;
(2)为抛物线的顶点,,,的面积分别记为,,,求证:为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com