(本小题满分12分)如图,在平面四边形中,是正三角形,,.
(Ⅰ)将四边形的面积表示成关于的函数;
(Ⅱ)求的最大值及此时的值.
科目:高中数学 来源: 题型:解答题
(14分)如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD,AB距离分别为m,m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕,.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
(1)求S关于x的函数关系式及该函数的定义域;
(2)当x取何值时,液晶广告屏幕MNEF的面积S最小?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知梯形中,∥,,,、分别是、上的点,∥,,是的中点.沿将梯形翻折,使平面⊥平面 (如图).
(I)当时,求证: ;
(II)若以、、、为顶点的三棱锥的体积记为,求的最大值;
(III)当取得最大值时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,空间四边形ABCD被一平面所截,截面EFGH是平行四边形.
(1)求证:CD∥平面EFGH;
(2)如果AB=CD=a求证:四边形EFGH的周长为定值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com