精英家教网 > 高中数学 > 题目详情

【题目】,函数.

1)当时,求内的极值;

2)设函数,当有两个极值点时,总有,求实数的值.

【答案】1)极大值是,无极小值;(2

【解析】

1)当时,可求得,令,利用导数可判断的单调性并得其零点,从而可得原函数的极值点及极大值;

2)表示出,并求得,由题意,得方程有两个不同的实根,从而可得△,由,得.则可化为对任意的恒成立,按照三种情况分类讨论,分离参数后转化为求函数的最值可解决;

1)当时,.

,则,显然在上单调递减,

又因为,故时,总有,所以上单调递减.

由于,所以当时,;当时,.

变化时,的变化情况如下表:

+

-

极大

所以上的极大值是,无极小值.

2)由于,则.由题意,方程有两个不等实根,则,解得,且,又,所以.

,可得

.将其代入上式得:.

整理得,即

时,不等式恒成立,即.

时,恒成立,即,令,易证上的减函数.因此,当时,,故.

时,恒成立,即

因此,当时,所以.

综上所述,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为 为参数),曲线的极坐标方程为.

(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;

(2)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在古装电视剧《知否》中,甲乙两人进行一种投壶比赛,比赛投中得分情况分有初”“贯耳”“散射”“双耳”“依竿五种,其中有初两筹贯耳四筹散射五筹双耳六筹依竿十筹,三场比赛得筹数最多者获胜.假设甲投中有初的概率为,投中贯耳的概率为,投中散射的概率为,投中双耳的概率为,投中依竿的概率为,乙的投掷水平与甲相同,且甲乙投掷相互独立.比赛第一场,两人平局;第二场,甲投了个贯耳,乙投了个双耳,则三场比赛结束时,甲获胜的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点( )

A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变

B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变

C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变

D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,长郡中学高三兴趣研究小组利用暑假空闲期间做了一项对人们雾霾天外出时是否戴口罩的调查,共调查了120人,其中女性70人,男性50人,并根据统计数据画出等高条形图如图所示:

(Ⅰ)利用图形判断性别与雾霾天外出戴口罩是否有关系;

(Ⅱ)根据统计数据建立一个列联表;

(Ⅲ)能否在犯错误的概率不超过0.05的前提下认为性别与雾霾天外出戴口罩有关系.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的各条棱长均相等, 的中点, 分别是线段和线段上的动点(含端点),且满足.当运动时,下列结论中不正确的是( )

A. 平面平面 B. 三棱锥的体积为定值

C. 可能为直角三角形 D. 平面与平面所成的锐二面角范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】扇形AOB中心角为,所在圆半径为,它按如图()()两种方式有内接矩形CDEF

(1)矩形CDEF的顶点CD在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设

(2)M是圆弧AB的中点,矩形CDEF的顶点DE在圆弧AB上,且关于直线OM对称,顶点CF分别在半径OBOA上,设

试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:①函数

②向量,且

③函数的图象经过点

请在上述三个条件中任选一个,补充在下面问题中,并解答.

已知_________________,且函数的图象相邻两条对称轴之间的距离为.

1)若,且,求的值;

2)求函数上的单调递减区间.

注:如果选择多个条件分别解答,按第一个解答计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于两点,点是线段的中点,直线轴交于点,求.

查看答案和解析>>

同步练习册答案