精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD90°ADAP4ABBC2MPC的中点.

1)求异面直线APBM所成角的余弦值;

2)点N在线段AD上,且ANλ,若直线MN与平面PBC所成角的正弦值为,求λ的值.

【答案】1.21

【解析】

1)先根据题意建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.

2,由ANλ,设N(0λ0)(0≤λ≤4),则(1λ1,-2),再求得平面PBC的一个法向量,利用直线MN与平面PBC所成角的正弦值为,由|cos|求解.

1 因为PA⊥平面ABCD,且ABAD平面ABCD,所以PAABPAAD.

又因为∠BAD90°,所以PAABAD两两互相垂直.

分别以ABADAPxyz轴建立空间直角坐标系,

则由AD2AB2BC4PA4可得

A(000)B(200)C(220)D(040)P(004)

又因为MPC的中点,所以M(112)

所以(112)(004)

所以cos〉=

所以异面直线APBM所成角的余弦值为.

2 因为ANλ,所以N(0λ0)(0≤λ≤4)

(1λ1,-2)(020)(20,-4)

设平面PBC的法向量为(x,y,z)

x2,解得y0z1

所以(201)是平面PBC的一个法向量.

因为直线MN与平面PBC所成角的正弦值为

所以|cos|

解得λ1[04]

所以λ的值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面,且分别为棱的中点.

I)证明:直线共面;

)证明:平面平面;并试写出到平面的距离(不必写出计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一带一路丝绸之路经济带“21世纪海上丝绸之路的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.2013年以来,一带一路建设成果显著.下图是2013-2017年,我国对一带一路沿线国家进出口情况统计图.下列描述错误的是(

A.这五年,2013年出口额最少

B.这五年,出口总额比进口总额多

C.这五年,出口增速前四年逐年下降

D.这五年,2017年进口增速最快

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC-A1B1C1中,已知ABACAB2AC4AA13DBC的中点.

(1) 求直线DC1与平面A1B1D所成角的正弦值;

(2) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD的边长AB3,侧棱AA12E是棱CC1的中点,点F满足2.

1)求异面直线FEDB1所成角的余弦值;

2)记二面角E-B1F-A的大小为θ,求|cosθ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地实行垃圾分类后,政府决定为三个小区建造一座垃圾处理站M,集中处理三个小区的湿垃圾.已知的正西方向,的北偏东方向,的北偏西方向,且在的北偏西方向,小区相距相距.

1)求垃圾处理站与小区之间的距离;

2)假设有大、小两种运输车,车在往返各小区、处理站之间都是直线行驶,一辆大车的行车费用为每公里元,一辆小车的行车费用为每公里元(其中为满足内的正整数) .现有两种运输湿垃圾的方案:

方案1:只用一辆大车运输,从出发,依次经再由返回到

方案2:先用两辆小车分别从运送到,然后并各自返回到,一辆大车从直接到再返回到.试比较哪种方案更合算?请说明理由. 结果精确到小数点后两位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:

①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;

②可以估计不足的大学生使用主要玩游戏;

③可以估计使用主要找人聊天的大学生超过总数的.

其中正确的个数为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何是美籍法国数学家芒德勃罗在20世纪70年代创立的一门数学新分支,其中的谢尔宾斯基图形的作法是:先作一个正三角形,挖去一个中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的每个小正三角形中又挖去一个中心三角形”.按上述方法无限连续地作下去直到无穷,最终所得的极限图形称为谢尔宾斯基图形(如图所示),按上述操作7次后,谢尔宾斯基图形中的小正三角形的个数为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】淮北市第一次模拟考试理科共考语文、数学、英语、物理、化学、生物六科,安排在某两日的四个半天考完,每个半天考一科或两科.若语文、数学、物理三科中任何两科不能排在同一个半天,则此次考试不同安排方案的种数有( )(同一半天如果有两科考试不计顺序)

A.B.C.D.

查看答案和解析>>

同步练习册答案
闁稿骏鎷� 闂傚偊鎷�