精英家教网 > 高中数学 > 题目详情
精英家教网如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是圆的直径,上底CD的端点在圆周上,写出这个梯形周长y和腰长x间的函数解析式,定义域,并求出周长的最大值.
分析:作DE⊥AB于E,连接BD,根据相似关系求出AE,而CD=AB-2AE,从而求出梯形ABCD的周长y与腰长x间的函数解析式,根据AD>0,AE>0,CD>0,可求出定义域;利用二次函数在给定区间上求出最值的知识可求出函数的最大值.
解答:解:如图,作DE⊥AB于E,连接BD.精英家教网
因为AB为直径,所以∠ADB=90°.
在Rt△ADB与Rt△AED中,∠ADB=90°=∠AED,∠BAD=∠DAE,
所以Rt△ADB∽Rt△AED.
所以
AD
AB
=
AE
AD
,即AE=
AD2
AB

又AD=x,AB=4,所以AE=
x2
4

所以CD=AB-2AE=4-
x2
2

于是y=AB+BC+CD+AD=4+x+4-
x2
2
+x=-
1
2
x2
+2x+8
由于AD>0,AE>0,CD>0,所以x>0,
x2
4
>0
,4-
x2
2
>0,
解得0<x<2
2

故所求的函数为y=-
1
2
x2
+2x+8(0<x<2
2

y=-
1
2
x2
+2x+8=-
1
2
(x-2)2+10,
又0<x<2
2
,所以,当x=2时,y有最大值10.
点评:本题考查利用数学知识解决实际问题.射影定理的应用是解决此题的关键,二次函数在解决实际问题中求解最值的常用的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上.
(1)求梯形ABCD的周长y与腰长x间的函数解析式,并求出它的定义域;
(2)求梯形ABCD的周长y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一块半径为2的半圆形钢板,现将其裁剪为等腰梯形ABCD的形状.它的下底AB是圆O的直径,上底CD的端点在圆周上.
(1)写出这个梯形的周长y与腰长x之间的函数关系式,并求出定义域;
(2)求y的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省揭阳市惠来一中高一(上)9月月考数学试卷(解析版) 题型:解答题

如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上.
(1)求梯形ABCD的周长y与腰长x间的函数解析式,并求出它的定义域;
(2)求梯形ABCD的周长y的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省肇庆市高一(上)期末数学试卷(解析版) 题型:解答题

如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上.
(1)求梯形ABCD的周长y与腰长x间的函数解析式,并求出它的定义域;
(2)求梯形ABCD的周长y的最大值.

查看答案和解析>>

同步练习册答案