精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点,使得总能被轴平分
(1);(2)见解析.
(Ⅰ)利用相关点法把所求点的问题转化已知动点问题,从而得到曲线的轨迹方程;(Ⅱ)联立方程,利用韦达定理及条件转化为点的坐标关系,从而求出点的坐标。
解:(1)设为曲线上的任意一点,则点在圆上,
,曲线的方程为.  ………………2分       
(2)设点的坐标为,直线的方程为,  ………………3分   
代入曲线的方程,可得 ,……5分            
,∴
∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)
………………6分
设点,的坐标分别, ,则,               
要使轴平分,只要,            ………………9分
,        ………………10分
也就是
,即只要  ………………12分  
时,(*)对任意的s都成立,从而总能被轴平分.
所以在x轴上存在定点,使得总能被轴平分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在椭圆>0,>0)外 ,则过作椭圆的两条切线的切点为P1、P2,切点弦P1P2的直线方程是,那么类比双曲线则有如下命题: 若在双曲线>0,>0)外 ,则过作双曲线的两条切线的切点为P1、P2,切点弦P1P2的直线方程是           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,过点作抛物线 的切线,切点A在第二象限.

(1)求切点A的纵坐标;
(2)若离心率为的椭圆恰好经过切点A,设切线交椭圆的另一点为B,记切线,OA,OB的斜率分别为,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E的中心在坐标原点,焦点在轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点且相互垂直的两条直线,交椭圆E于两点,交椭圆E于两点,的中点分别为
(1)求椭圆E的标准方程;
(2)求直线的斜率的取值范围;
(3)求证直线与直线的斜率乘积为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的中心在原点,焦距为4 一条准线为x="-4" ,则该椭圆的方程为
A.+=1B.+=1C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分15分)已知椭圆ab>0)的离心率,过点A(0,-b)和Ba,0)的直线与原点的距离为 
(1)求椭圆的方程 
(2)已知定点E(-1,0),若直线ykx+2(k≠0)与椭圆交于C D两点 问:是否存在k的值,使以CD为直径的圆过E点?请说明理由 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点是椭圆上一点,分别是椭圆的左、右焦点,的内心,若,则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的左、右焦点分别为,线段被抛物线的焦点F分成5:3两段,则椭圆的离心率为 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左、右焦点分别为,若椭圆上存在点(异于长轴的端点),使得,则该椭圆离心率的取值范围是    

查看答案和解析>>

同步练习册答案