精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线方程是y=
3
x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出抛物线的准线方程,可得双曲线的焦点,即有c=6,再由渐近线方程可得a,b的方程,解出a,b,进而得到双曲线的方程.
解答: 解:由题意可得,抛物线y2=24x的准线为x=-6,
双曲线的一个焦点为(-6,0),即有c=6,
b
a
=
3
,36=a2+b2=4a2,a2=9,b2=27,
则所求双曲线的方程为
x2
9
-
y2
27
=1.
故答案为:
x2
9
-
y2
27
=1.
点评:本题考查抛物线和双曲线的方程和性质,考查渐近线方程的运用,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
3
sinx+cosx,x∈R.
(1)求最小正周期;
(2)求函数的单调递增与递减区间;
(3)求函数的最大值、最小值,及函数取得最大、最小值时自变量x的集合;
(4)求函数的对称中心及对称轴;
(5)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
p
=(sinx,cosx),
q
=(2,1),
(1)若 
p
q
,求sin2x-sinxcosx的值
(2)若
p
q
,求sinx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
2
-
y2
2
=1的实轴长为(  )
A、
2
B、2
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若AB=
7
,AC=1,∠C=
π
3
,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln(x+1)-x的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)试证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(m,n,a,b∈R)
(Ⅱ)已知x2+y2=2,且|x|≠|y|,求
1
(x+y)2
+
1
(x-y)2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,3)
b
=(-3,4)
,则
a
b
方向上的投影为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论正确的是(  )
A、若向量
a
b
,则存在唯一的实数λ使得
a
=2λ
b
B、已知向量
a
b
为非零向量,则“
a
b
的夹角为钝角”的充要条件是“
a
b
<0”
C、命题:若x2=1,则x=1或x=-1的逆否命题为:若x≠1且x≠-1,则x2≠1
D、若命题P:?x∈R,x2-x+1<0,则¬P:?x∈R,x2-x+1>0

查看答案和解析>>

同步练习册答案