精英家教网 > 高中数学 > 题目详情
15.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=2x+4y的最小值是(  )
A.-6B.-10C.5D.10

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$,解得A(3,-3),
化目标函数z=2x+4y为y=$-\frac{1}{2}x+\frac{z}{4}$,由图可知,当直线y=$-\frac{1}{2}x+\frac{z}{4}$过点A时,直线在y轴上的截距最小,z有最小值为-6.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.有甲、乙、丙、丁四位同学竞选班长,其中只有一位当选.有人走访了四位同学,甲说:“是乙或丙当选”,乙说:“甲,丙都未当选”,丙说:“我当选了”,丁说:“是乙当选了”,若四位同学的话只有两句是对的,则当选的同学是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>0,则下列不等关系不恒成立的是(  )
A.若m>n,则$\frac{n+a}{m+a}$<$\frac{n}{m}$B.a+$\frac{9}{a+2}$≥4
C.a2+$\frac{1}{{a}^{2}}$≥a+$\frac{1}{a}$D.若函数f(x)=|1-x2|,则f(ax)-a2f(x)≤f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α∈(0,$\frac{π}{2}$))与圆C:(x-1)2+(y-2)2=4相交于点A,B,以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l与圆C的极坐标方程;
(2)求$\frac{1}{|OA|}$$+\frac{1}{|OB|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=3•2x+3的定义域为[-1,2],则值域为[$\frac{9}{2}$,15].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将25个数排成五行五列:

已知第一行成等差数列,而每一列都成等比数列,且五个公比全相等.若a24=4,a41=-2,a43=10,则a11×a55的值为-11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,过原点的直线l与双曲线交于M,N两点,且$\overrightarrow{MF}•\overrightarrow{NF}$=0,△MNF的面积为ab.则该双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=ex,g(x)=-x2+2x+a,a∈R.
(Ⅰ)讨论函数h(x)=f(x)g(x)的单调性;
(Ⅱ)记φ(x)=$\left\{\begin{array}{l}f(x),x<0\\ g(x),x>0\end{array}$,设A(x1,φ(x1)),B(x2,φ(x2))为函数φ(x)图象上的两点,且x1<x2
(ⅰ)当x>0时,若φ(x)在A,B处的切线相互垂直,求证x2-x1≥1;
(ⅱ)若在点A,B处的切线重合,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按抽签方法确定的号码是(  )
A.7B.5C.4D.3

查看答案和解析>>

同步练习册答案