精英家教网 > 高中数学 > 题目详情
(1)解关于x的不等式
x+3x-5
+1<0

(2)记(1)中不等式的解集为A,函数g(x)=lg[(x-a-1)(2a-x)],(a<1)的定义域为B.若B⊆A,求实数a的取值范围.
分析:(1)由不等式
x+3
x-5
+1<0
,化为
2x-2
x-5
<0
?(x-1)(x-5)<0,利用一元二次不等式的解法即可得出;
(2)要使函数g(x)=lg[(x-a-1)(2a-x)],(a<1)有意义,则(x-a-1)(x-2a)<0,由a<1,可得a+1>2a.即可得出解集.
可得B=(2a,a+1).再利用B⊆A,即可得出.
解答:解:(1)由不等式
x+3
x-5
+1<0
,化为
2x-2
x-5
<0
?(x-1)(x-5)<0,
解得1<x<5,因此原不等式的解集为{x|1<x<5};
(2)要使函数g(x)=lg[(x-a-1)(2a-x)],(a<1)有意义,则(x-a-1)(2a-x)>0,即(x-a-1)(x-2a)<0,
∵a<1,∴a+1>2a.
∴上述不等式的解集为{x|2a<x<a+1}.
∴B=(2a,a+1).
∵B⊆A,∴
a<1
2a≥1
a+1≤5
,解得
1
2
≤a<1

故当B⊆A,实数a的取值范围是[
1
2
,1)
点评:熟练掌握分式不等式的等价转化为整式不等式、对数函数的定义域、一元二次不等式的解法、集合间的关系等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对a、b∈R,记max{a,b}=
a,a≥b
b,a<b
,函数f(x)=max{|x+1|,|2x+5|}(x∈R).
(1)求f(0),f(-3);
(2)作出f(x)的图象,并写出f(x)的单调区间;
(3)若关于x的方程f(x)=m有且仅有两个不等的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程8sin(x+
π
3
)cosx-2
3
-a=0在开区间(-
π
4
π
4
)
上.
(1)若方程有解,求实数a的取值范围.
(2)若方程有两个不等实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-3x+a=0有两不等实根;命题q:关于x的不等式x2+ax+a>0的解集为R.
(1)若p为真命题且q为假命题,试求a的取值范围;
(2)若“p或q”为真,“p且q”为假,则a的取值范围又是怎样的?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-2x-3<0解集为A,不等式x2+x-6<0的解集为B,
(1)求A∩B;
(2)若关于x的不等式x2+ax+b<0的解集为C,其A∩B⊆C,试写出实数a,b应满足的不等关系,并在给定坐标系中画出该不等关系所表示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程|x2-1|=a有三个不等的实数解,则实数a的值是
1
1

查看答案和解析>>

同步练习册答案