精英家教网 > 高中数学 > 题目详情

【题目】命题p:x>0,x+ >a;命题q:x0∈R,x02﹣2ax0+1≤0.若¬q为假命题,p∧q为假命题,则求a的取值范围.

【答案】解:不妨设p为真,要使得不等式恒成立,只需
又∵当x>0时, (当且仅当x=1时取“=”,∴a<2,
不妨设q为真,要使得不等式有解只需△≥0,即(﹣2a)2﹣4≥0
解得a≤﹣1或a≥1,
∵q假,且“p∧q”为假命题,故q真p假,
所以
∴实数a的取值范围为a≥2.
【解析】分别解出p,q为真时的a的范围,进而求出 q真p假时a的范围.
【考点精析】本题主要考查了复合命题的真假的相关知识点,需要掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣kx,x∈R(e是自然对数的底数).
(1)若k∈R,求函数f(x)的单调区间;
(2)若k>0,讨论函数f(x)在(﹣∞,4]上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在120分以上(含120分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[135,150]的学生中选两位同学,共同帮助成绩在[60,75)中的某一位同学.已知甲同学的成绩为62分,乙同学的成绩为140分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表:

分组

频数

频率

[60,75)

2

0.04

[75,90)

3

0.06

[90,105)

14

0.28

[105,120)

15

0.30

[120,135)

A

B

[135,150]

4

0.08

合计

C

D

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+)(ω>0)的部分图象如图所示,下面结论正确的个数是(
①函数f(x)的最小正周期是2π
②函数f(x)的图象可由函数g(x)=sin2x的图象向左平移 个单位长度得到
③函数f(x)的图象关于直线x= 对称
④函数f(x)在区间[ ]上是增函数.

A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,在以极点为直角坐标原点,极轴为轴的正半轴建立的平面直角坐标系中,直线的参数方程为为参数).

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)在平面直角坐标系中,设曲线经过伸缩变换 得到曲线,若为曲线上任意一点,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点和直线,圆C与直线相切,并且圆心C关于点的对称点在圆C上,直线轴相交于点

(Ⅰ)求圆心C的轨迹E的方程;

(Ⅱ)过点且与直线不垂直的直线与圆心C的轨迹E相交于点A、B,面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是常数.

(Ⅰ)若,且曲线的切线经过坐标原点,求该切线的方程

(Ⅱ)讨论的零点的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比数列.
(1)求数列{an}的通项公式;
(2)设{ }是首项为1公比为2的等比数列,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,△ABC是边长为6的正三角形,设 (x,y∈R).

(1)若x=y=1,求| |;
(2)若 =36, =54,求x,y.

查看答案和解析>>

同步练习册答案